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Abstract

Timetabling presents an NP-hard combinatorial optimization problem which requires
an efficient search algorithm. This research aims at designing a genetic algorithm for
timetabling real-world school resources to fulfil a given set of constraints and preferences.
It further aims at proposing a parallel algorithm that is envisaged to speed up convergence
to an optimal solution, given its existence. The timetable problem is modeled as a con-
straint satisfaction problem (CSP) and a theoretical framework is proposed, which guides
the approach used to formulate the algorithm. The constraints are expressed mathemat-
ically and a conventional algorithm is designed that evaluates solution fitness based on
these constraints. Test results based on a subset of real-world, working data indicate that
convergence on a feasible (and optimal/Pareto) solution is possible within the search space
presented by the given resources and constraints. The algorithm also degrades gracefully
to a workable timetable if an optimal one is not located. Further, a SIMD-based parallel
algorithm is proposed that has the potential to speed up convergence on multi-processor
or distributed platforms.
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Chapter 1

Introduction

1.1 Research Context

Timetabling is a well known NP-Hard combinatorial optimization problem that has not
yet been solved in polynomial time using a deterministic algorithm. Several techniques are
used to solve the timetabling problem including manual construction, search heuristics
(tabu search, simulated annealing and genetic algorithms), neural networks and graph
colouring algorithms. Most timetabling problems have application specific peculiarities
and hence, the use of domain-specific patterns together with most of the aforementioned
techniques to improve computational efficiency is not uncommon (see [9], [18]).

However, despite the considerable success of the aforementioned techniques, the timetabling
problem still remains a challenge especially when dealing with large data sets with many
constraints. This research investigates the suitability of using genetic algorithms (GAs)
to locate an optimal school timetable in a large search space. Our work is set apart from
previous studies by the prior development of a theoretical framework as a basis for con-
vergence of the proposed algorithm. In addition, our investigation targets real-time data
sets governed by potentially conflicting constraints, a goal that is seldom seen in most
similar past research efforts. In particular, the work endeavours to achieve the following
objectives:

1. Explore a theoretical framework for using GAs for timetable construction

2. Design and prototype a genetic algorithm to solve the timetabling problem and test
it using a trial dataset

3. Propose a distributed timetabling GA based on the results of objective (2)
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1.2 Methodology

The research sets out by modeling the timetable problem and proposing a theoretical
framework as a basis for the convergence of the proposed algorithm. Secondly, a serial
algorithm is designed and prototyped to furnish a timetable from a subset of real-world
university student data with the aim of investigating the effects of various parameters on
its convergence behaviour. This is followed by application of the algorithm to a bigger
data set to investigate its scalability properties. Finally, a parallel/distributed GA is
proposed with the goal of exploiting current distributed/parallel architectures to enhance
performance when applied to real-world data sets.

The rest of this paper is organised as follows: The next section (2) briefly introduces
critical timetable and GA concepts with the aim of laying a foundation for understanding
subsequent discussion. The section also includes a review and analysis of literature on GA-
based scheduling algorithms and heuristics. The analysis relates the proposed research
topic to the state of the art and endeavours to situate it in the context of already existing
work. Section 3 documents and discusses the theoretical framework and the proposed
genetic algorithm and analyses the results obtained from the prototype and a test data
set. The section concludes with details of the proposed distributed genetic algorithm.
Finally, Section 4 summarizes the results of the analysis, explores the limitations of the
algorithm and suggests directions for future work.
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Chapter 2

State of the Art

2.1 The Timetable Problem

A school timetable is a combinatorial optimization problem set up as follows: Given a
set of resources (lecture rooms, labs etc), and a set of student groups, along with a set of
teachers, how can these three entities be arranged in time so that given constraints are
met and optimality conditions are also satisfied. Perhaps the most complex timetables are
found in universities where the number of students and lecturers is large and enrollment
into courses is guided by route maps. In such settings, allocation of courses and their
respective lecturers to time slots and rooms requires that a set of potentially conflicting
constraints be satisfied.

Most literature recognize two categories of constraints; hard and soft constraints. The
former are those that must be satisfied for the timetable to be feasible (applicable) while
the latter may be satisfied to enhance the quality of the timetable. Examples of hard
constraints include conflicts or clashes (a lecturer cannot teach more than one course at
the same time, students can only attend one class at a time, a room cannot be allocated to
two classes at the same time) and capacity (a class must be allocated a room with enough
capacity). Soft constraints may include administrative needs or individual/departmental
preferences. Examples include class location and timing preferences, departmental room
allocation preferences and class spacing.

2.2 Genetic Algorithm Concepts

Genetic algorithms are a stochastic search mechanism that uses principles of natural se-
lection to evolve and search for solutions to complex combinatorial problems . GAs are
typically initialized with an initial random set of potential solutions (typically called a
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population of chromosomes) that evolve through iterative application of genetic opera-
tors until a given optimal value or a maximum number of generations is observed. The
most common genetic operators include selection, crossover (recombination) and muta-
tion. Selection is the mechanism of choosing parents that will produce the next popula-
tion. Selected parents are allowed to crossover (mate or recombine) to produce offspring.
Mutation is the introduction of minute random alterations to a chromosome to induce
diversity into the population.

More advanced GAs use additional concepts such as elitism and migration that allow for
more robust searching. Elitism ensures that the best chromosome is maintained between
successive generations by artificially inducing it. In multi-population, distributed/parallel
GAs, migration allows exchange of individuals among isolated populations in order to in-
troduce new genetic material, in effect, moving the isolated searches to different regions
of the global search space. A fitness function based on the optimization objective(s) is
typically used to evaluate a chromosome’s fitness value, which in turn determines the
chromosome’s suitability for reproduction (crossover) and survival into the next genera-
tion.

Several factors affect the efficiency, convergence time and overall performance of a GA.
These include the chromosome encoding scheme, mutation rate, crossover rate, selection
mechanism and migration parameters in distributed GAs. The crossover rate or proba-
bility is the likelihood that two parents will mate and produce offspring after selection. A
GA’s mutation rate indicates the probability that an offspring will mutate after crossover.
The selection mechanism determines how the algorithm selects parents to reproduce off-
spring for the next generation and also determines the population’s selection pressure.
High pressure implies that individuals with better fitness values have higher chances of
being selected for crossover than those with lower values. Low pressure implies uniform
probability for selection across the population. Setting the optimal pressure ensures that
the algorithm does not converge prematurely and that it avoids local optima. Several
selection mechanisms have been proposed but the two most commonly used are fitness
proportionate methods and tournament-based methods.

For distributed GAs, additional factors that have a bearing on the algorithm’s efficiency
include subpopulation number and size, migration rates, topology and migration timing.

2.3 Literature Review

This section reviews several influential works in the areas of GAs and distributed/parallel
GAs as applied to school timetabling and scheduling in general. The approach used aims
at critically examining each piece of literature in the context of the research objectives
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outlined in the introduction. Particularly, the survey analyzes the extent to which GAs
have been applied to real-world school timetabling problems and also developments made
in terms of leveraging current hardware and software technologies to parallelize genetic
algorithms in general. It is envisaged that by the end of this survey, the research topic,
approach and objectives will have been justified and situated in the context of existing
related work.

Considerable research on scheduling/timetabling using genetic algorithms has been con-
ducted, despite minimal literature documenting cases of satisfactory applications to real-
world, large data sets. Corne and Ross [19] explored a successful arbitrary lecture
timetabling approach using (serial) evolutionary algorithms. Their approach was applica-
ble to data sets of considerable sizes and scaling up was left to further research. Burke et
al. [6] proposed a hybrid genetic algorithm for highly constrained timetabling problems
to solve a university exam timetabling problem. They proposed generation of an initial
population of feasible timetables using graph coloring methods and further refinement
of these solutions using genetic operators. The algorithm was tested successfully on a
randomly generated test problem but took considerably long to converge on real world
data. Similar approaches can be seen in [9], [15] and [17].

Colorni et al. [9] further explore the problem of generating infeasible solutions after
application of genetic operators (mutation and crossover). They propose repair strategies,
heuristics and filters to guide the GA and allow it to only explore promising sections of
the search space. Using data from an Italian high school, they were able to produce
feasible timetables of better quality compared to handmade ones and those produced by
simulated annealing. However, their results proved to be inferior to solutions obtained
using tabu search and test cases were reported to take 8 hours to complete.

Another effort of comparable success was the work of Lukas et al. [18] who conducted a
case study using a combination of GA and a search heuristic to solve a timetabling problem
for a university. The GA was used to salvage feasible course combinations and sequences
which in turn were fed into a search heuristic that allocated the course combinations to
time slots. Experimental results showed a successful generation of a feasible timetable
for a representative real data set. However, the approach taken used a GA as a helper
tool for generating feasible course groups rather than a dominant generator of feasible
timetables. In addition, other resources (such as rooms) were not taken into account and
inclusion was left to further research.

Other works have endeavored to employ advanced genetic operators to improve the per-
formance and convergence time of GA-based timetabling algorithms. Beligiannis et al.
[3] proposed an adaptive GA approach to high-school timetabling in Greece. The ap-
proach assigned weights to constraints to allow need-based dynamic reconfiguration. The
mutation rate was incremented with each successive generation to avoid convergence on

5



local optima and elitism was used to preserve the best individuals between generations.
Notably, their approach favored generation of an initial population of semi-feasible indi-
viduals over the usage of repair strategies, purporting that the latter could cause the GA
to be trapped in local optima, which is in contrast to the approach taken by Colorni et al.
in [9]. Similarly, Sigl et al. [5] solved the timetable problem by applying improved genetic
operators with significant improvements in performance. They used binary encoding of
timetable chromosomes and used improved tournament selection with modified uniform
crossover designed to minimize constraint violation between consecutive generations. The
algorithm was tested on both large and small data sets with noticeable improvements in
both clash minimization and convergence time.

The literature reviewed reveals that the amount work done by previous researchers to
improve genetic algorithms in general and application to the timetabling problem in par-
ticular has not been matched by efforts to design GA-based approaches that can leverage
current distributed/parallel architectures. Most research has dwelled on designing paral-
lel/distributed GA approaches with no application to substantial real world timetabling
problems. Perhaps the most notable effort to parallelize a GA specifically for timetabling
purposes is the work of Abramson and Abela [1]. Their work explored areas in a basic ge-
netic algorithm that could easily be parallelized on a shared memory multiprocessor with
minimal synchronization (inter-process communication) overhead. They noted that selec-
tion and crossover were the two most promising areas for parallelization and distributed
the crossover operation among several worker threads. Experimental results based on 9
data sets showed a maximum speedup of 9.3 on 15 processors. However, despite record-
ing considerable speedup, their work only involved basic exploitation of instruction level
parallelism besides being based on an outdated multiprocessor platform.

Another research endeavor worth noting is the work of Pospichal et al. [16]. Their
research focused on mapping multi-population GA (using the island model as described
by the authors) for execution on a Graphics Processing Unit (GPU) through the Compute
Unified Device Architecture (CUDA) model. Standard GA benchmarking algorithms were
used to compare speedups on two types of GPUs; the GTX 285 (30 multiprocessors / 240
cores) and GTX 260-SP216 (27 multiprocessors / 216 cores) against the Intel Core i7
92. Average speedups of seven thousand were observed without compromising the quality
of results. This promises a great potential for the timetabling problem to be efficiently
solved by employing similar techniques and technologies.

Other notable literature on parallel GAs is seen in [2], [7] and [16]. El-daily et al. [2]
compared three different DGA approaches based on their ability to maintain diversity
in all subpopulations post migration. The paper surveyed DGA with Diversity Guided
Migration, which migrated a special individual and replaced clones in adjacent subpopu-
lations; DGA with Automated Adaptive Migration and DGA with Bi-coded Chromosomes.
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The last two approaches replaced the worst individuals in subpopulations during migra-
tion. Test results showed that DGA with Diversity Guided Migration was superior to the
other two approaches in the majority of test cases. It is worth noting that the comparison
criterion used was not based on the fundamental goals of distributed approaches such as
speedup and reduced convergence time. In addition, their work was generalized and did
not have any direct application to the timetabling/scheduling domain.

Similar work was done by Cantú-Paz [7] who conducted a survey of parallel GA-based
algorithms and classified them into four major categories; Master-slave (global) Scheme,
a single population scheme with distributed computation of fitness function on slave pro-
cessors; Single Population Fine Grained Scheme involving a single population with selec-
tion and crossover occurring within restricted neighborhoods; Multiple-population (multi-
deme) Coarse Grained Scheme, which uses multiple populations distributed to multiple
processors with possible migration (communication) and the Hierarchical scheme, a com-
bination of the three schemes to produce a hierarchical, parallel approach.

Perhaps the scheme with the most potential for applicability is the multiple-population
scheme. The author notes that the migration rate, frequency and communication topology
in the multiple-deme scheme affects the efficiency and convergence time of the algorithm
and has implications on the quality of the optimal solution. In addition, the author also
purports that the number of demes (isolated populations) affects overall algorithm ef-
ficiency and that there exist a theoretical optimum number of demes for each problem
category over which the communication overhead of the parallel algorithm begins to over-
shadow the speed up due to parallelism. Further analysis of this scalability issue led by
the same author can be seen in [8].

In addition to the main literature which has a direct bearing on the topic of research, there
are other publications that focus on specific aspects of genetic algorithms. Of some signif-
icance to the topic at hand is the work of Xie and Zhang [23], which focused on adaptive
tuning of selection pressure when tournament selection is used in a GA. In particular, they
distinguished purely stochastic selection mechanisms (low selection pressure) from guided
mechanisms (high selection pressure) and examined a novel adaptive selection mechanism
that adjusts the selection pressure during the course of evolution based on what they
termed as a Fitness Rank Distribution. They observed that populations undergo different
fitness distributions during evolution (uniform, reverse-quadratic, random and quadratic)
and that that tournament size itself is not a sufficient factor to consider when tuning
selection pressure and that more intelligence is required in the course of execution. It was
concluded that the intelligent selection mechanism yields better results for their GA as it
adapted the selection pressure to the changing fitness distribution of the population.
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Chapter 3

Contribution and Analysis

3.1 Theoretical Framework

3.1.1 Model Formulation

The timetabling problem will be modeled as a Constraint Satisfaction Problem (CSP). It
is an NP-hard problem with no known polynomial-time algorithm and we will work under
the assumption that P 6= NP and, therefore, it may not be solved efficiently in polynomial
time using a deterministic algorithm. This, in turn implies solving using other means e.g.
search heuristics. Given a timetabling problem T, then modeled as a CSP:

T = 〈X,D,Q,H, S〉

where:

• X is a set of four variables; L, C, R and P for lecturer, course, room and time slots
(or periods) respectively

• D = {Dl, Dc, Dr, Dp} is a finite set of domains of all variables in X

• H is a finite set of hard constraints i.e. relations specifying the admissible or feasible
combinations of values over sets in X

• Q ⊂ H is a set of relations that partition Dc into disjoint and collectively exhaustive
sets of student groups, G, such that:

∀g ∈ G ∧ ∀a, b ∈ Dc, (a, b ∈ g ∧ a 6= b) implies a and b do not have a common
student and are not taught by a common lecturer

• S is a finite set of soft constraints i.e. relations specifying the preferable combinations
of values over sets in X

8



Note that this extends the classical definition of a CSP by partitioning the set of con-
straints into two disjoint sets, H and S.

Given this definition, if we let V denote all possible variable combinations over their
respective domains, given by the Cartesian product:

V =
∏
x∈X

x (3.1)

then we can define a feasible timetable, τ as a subset of V that at least satisfies H. The
quality of τ is determined by the extent to which it satisfies S.

3.1.2 Nature of Search Space

The cardinality of V is given by:

|V | =
∏
x∈X

|x| (3.2)

If we let w denote the total number of contact hours for all courses, then the number of
all possible timetables is given by the set of w-ary1 subsets of V with cardinality:

(
|V |

w

)
=

|V |!

w!(|V |−w)!
(3.3)

This presents a large (factorial) finite search space for variable sets of moderate sizes
(e.g. a typical university has more than 300 courses, 100 classrooms, 200 lecturers and 40
weekly time slots).

3.1.3 Convergence of a GA-based Timetable Search

Given the complex nature of real-world constraints, it is likely that 6 ∃τ ⊂ V such that τ is
an optimal solution that is complete and consistent w.r.t both H and S. A fitness function
should be defined based on H and S to evaluate the feasibility and quality of candidate
solutions.

Ideally, in the case where no feasible solution exists, the GA should settle for the so-called
Pareto solution, an optimal (and usually infeasible) allocation where further optimization
of one constraint negatively affects one or more other constraints. The following conditions
are sufficient for non-existence of a feasible solution:

1Here we assume that one time slot is equivalent to one contact hour and this can be extended, without
loss of generality, to cover scenarios where this condition does not hold
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Condition 1: w > |Dp|× |Dr|. i.e. the total number of contact hours (w) for all courses
is greater than the number of all possible room-time slot combinations.

Condition 2: |G| > |Dp| i.e. the number of student groups is greater than the number
of available time slots. This is can be shown by noting that given any a, b ∈ Dc and if
a ∈ gi and b ∈ gj where gi ∩ gj = ∅, then a and b cannot be allocated the same time
slot since they share either a student or lecturer. But each group g ∈ G contains at least
one course, therefore if |G| > |Dp| then the timetable needs more than |Dp| timeslots to
be feasible.

Condition 3:
∑
g∈G

gmax ≤ |Dp|, where gmax is the maximum number of contact hours

among the courses in each group. This can be shown by noting that the resulting timetable
should allocate at least gmax hours for each g ∈ G. This is a direct consequence of the
fact that only one contact hour for a course can occupy a given time slot even in different
locations. Thus, a course with x contact hours requires at least x separate timeslots. We
can then conclude in a similar fashion to condition 2 that the total sum of the gmax should
be at most equal to |Dp|.

To increase the likelihood of convergence to a globally optimal solution in polynomial
time, the initial population should be restricted to a region that is most promising. Two
theories will constitute a framework for convergence of the proposed GA:

1. Holland’s Schema Theorem [14]

2. Markov Chain Analysis of Canonical Elitist-based GAs [22, 13, 20]

Holland [14, p. 15] defined schema as the generalization (or common pattern) of a set of
chromosomes, and their associated operators. In basic terms, he observed that certain
sets of chromosomes have common patterns of alleles and if these patterns are of above-
average fitness, they are most likely to be maintained and, in turn, produce above-average
offspring. The schema theorem as generalized by Goldberg’s in [11] takes the following
form:

m(H, t+ 1) ≥ m(H, t)θ(H, t)[1− ε(H, t)] (3.4)

where m(H, t) is the number of instances of schema H at time t, θ(H, t) is the ratio of
average fitness of instances of schema H to the average fitness of the whole population at
time t and ε(H, t) is the ‘error factor ‘that accounts for the stochastic disturbances to H
introduced by genetic operators.

The proposed GA uses the following two strategies to ensure introduction of above-average
schemas in the timetable gene population:
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(i) Prior knowledge of Q and the student groups that follow from partitioning (G)

(ii) Prior assignment of lectures to courses before optimization

The first strategy can be achieved by using an auxiliary partitioning algorithm or heuristic
(e.g. graph coloring) prior to running the GA. The latter is easily achievable since most
school schedules fix lecture-course assignments before generating timetables.

To further enhance the likelihood of convergence, the GA will be formulated within the
framework of Markov chain analysis of GA convergence that suggests sufficient conditions
that guarantee convergence to an optimal solution. It should be noted that GAs are a class
of randomized search heuristics that possess the Markov property i.e. evolution in GAs
is memoryless and stochastic. Given an initial population, θi, the probability of another
population θj being generated from θi (denoted by P(θi|θj)) depends only on the state of
θi. Markov chain analysis of the convergence behavior of canonical GAs using transitional
matrices of conditional probabilities can be seen in [22, 13, 20]. This theory applies to
canonical GA whose transitions are triggered by genetic operators of selection, mutation
and crossover. The analysis also proves that convergence is almost always guaranteed
if the GA implements elitism or any variation of it i.e. if the best individual is always
guaranteed selection into the next generation. Our approach employs canonical genetic
operators with repair and elitist strategies.

3.1.4 Genetic Operators

The two theories that form the basis of our work are founded on canonical GA operators,
namely, (uniform) selection, crossover and mutation. Further, as already seen, elitism
increases the odds of locating an optimal solution in a multi-dimensional, noisy search
space. It is also worth noting that the generalized schema theorem as given in [11]
is independent of the choice of genetic operators. This research employs the following
operator strategies:

Selection Mechanism

Given the nature of the timetabling problem, tournament selection presents a more suit-
able selection method as opposed to both fitness proportionate and rank-based mecha-
nisms. Given a population of size N, tournament selection works by selecting n random
individuals (n ≤ N) from which two parents are selected for crossover in a tournament
fashion. This is repeated until the required number of offspring for the next generation
is satisfied. This technique eliminates the need for fitness scaling techniques that are
used in the latter two schemes. Scaling is done to prevent premature convergence when
there are large gaps in fitness values between individuals in the early stages of evolution
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and to prevent stagnation when there is little variance in fitness values. In addition,
tournament selection is highly amenable to parallelization which can be exploited in a
parallel/distributed GA.

A critical parameter to consider when applying tournament selection to the timetabling
problem is the tournament size (n), which determines the behavior of the selection scheme.
At any point during evolution, selection pressure (ps) is directly proportional to n. Our
work will adopt the formula used by Blickle and Thiele in [4] that estimates2 the dimen-
sionless value of ps by:

ps ≈
√
2(ln(n) − ln(

√
4.14 ln(n))) (3.5)

This estimation will be utilized in this work where necessary to dynamically adjust ps
across generations (by varying n) to allow more control over the search process.

Crossover and Mutation

Crossover and mutation operators will be defined with repair strategies to further guide
the search towards an optimal solution and increase the chances of polynomial-time con-
vergence. Mutation and crossover rates will be modifiable between evolutions to allow
adaptation of the algorithm to different ‘environments’.

Elitist Strategy

Two important factors to consider when implementing elitism are (i) elite size and (ii)
replacement strategy. Elite size is the number of fittest chromosomes maintained between
consecutive generations. Elite replacement strategy defines how an elite chromosome (or
chromosomes) from a previous generation is inserted into a new population. Two ap-
proaches are commonly used; the first one replaces a random chromosome in the current
generation with the elite of the previous one and the second one replaces the worst chro-
mosome. Our approach uses an elite size of 1 (one) and leaves the choice of replacement
strategy to the implementer to allow flexibility.

2This assumes a Gaussian (Normal) distributed population with mean 0 and standard deviation 1
(G(0, 1)) but the authors purport that it can still be used as an approximation for populations that are
not normally distributed
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3.2 Proposed Algorithm

3.2.1 Serial Algorithm Overview

The algorithm will search for a solution in two phases. The first phase allocates student
groups to different rooms with the following objectives:

• Eliminate or optimize (minimize) student/lecturer clashes (i.e. no two or more
courses belonging to different student groups are scheduled at the same time)

• All allocations satisfy the capacity constraints i.e. all classes in the group should
optimally fit in the allocated room

• All required contact hours for the group are satisfied (allocated)

• Eliminate or minimize room clashes

Note that this phase assumes prior availability of student group information in addition to
courses, rooms, lecturers and time slots. Allocation of specific time slots in each room for
each group will be done in the second phase using a secondary GA to satisfy the following
objectives:

• Allocate peer courses for each group based on the optimized group allocation matrix
from first phase

• Optimize group timetables to satisfy departmental/administrative preferences

The algorithm searches within the boundaries of the following constraints:

Hard constraints (H)

• All required contact hours for each course are scheduled

• No clashes i.e. no student or lecturer can be in more than one class. Here class
means a combination of course and room and time slot (period)

• Each course is allocated a room that is available at that particular time

• Each course must be scheduled in a room with sufficient capacity

• A lecturer should only be assigned the courses he/she is eligible to teach

Soft constraints (S)

• Departmental rooms should be given priority when scheduling a course. This in-
cludes lab sessions, which require special rooms with appropriate equipment
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• All courses that require multiple consecutive time slots should be scheduled appro-
priately e.g. lab sessions

• Students/lecturers should be given breaks between classes (a good spread of classes)

3.2.2 Phase 1: Group Matrix Optimization

Chromosome Encoding

Let C be the set of all courses, R be the set of all rooms, P be the set of all timeslots
(or periods) and G be the set of all student groups. If we let wi denote the total sum of
contact hours for all courses in group gi ∈ G and let m = |G| and n = |R| and k = |P|

denote the cardinalities of the respective sets, then we can represent individual group
allocation chromosome as an m× n matrix of the form:

A = [aij],where aij ∈ Z ∩ [0,wi], 0 < i ≤ m, 0 < j ≤ n (3.6)

Thus aij = x indicates student group i is allocated x hours in room j. Therefore, A repre-
sents possible allocations of student group contact hours to rooms3. With this encoding
scheme, we can express the the hard constraints mathematically as follows:

Clashes:

Given that student groups are non-overlapping (i.e. peer courses in each group can be
scheduled at the same time in different spaces) then the three requirements to ensure no
clashes are:

1. Each column of A should add up to at most the total number of available time
slots for the given period (e.g. week). If the total exceeds this number then room j
contains a clash of two or more classes, i.e.

m∑
i=1

aij ≤ k,∀j ∈ Z ∩ [1, n] (3.7)

2. The total number of concurrent classes in each group (each row vector) should be
bound by the number of available class rooms (with enough capacity). Given our
encoding scheme, this can be mathematically expressed as:

3The matrix representation lends itself to almost effortless parallelism, a factor that will be exploited
in the design of the distributed algorithm

14



n∑
j=1

aij ≤ nk, ∀i ∈ Z ∩ [1,m] (3.8)

Note that equation 3.8 should ideally be a strict equality instead of an inequality
to preserve the exact number of required weekly hours for all courses in a group.
This is the approach that will be taken in our implementation in order to restrict
the search to a ‘promising’ solution space. Therefore, in the implementation, the
condition changes to:

n∑
j=1

aij = wi,∀i ∈ Z ∩ [1,m] (3.9)

where wi is the total number of hours for group i

3. Assuming condition 3 for non-existence of a feasible timetable is not met (see section
3.1.3), the total of the maximum allocated hours for each group should not exceed
the number of available time slots. Mathematically,

m∑
i=1

max(ai) ≤ k (3.10)

where ai denotes the ith row vector of A and max(ai) is the largest entry in the
vector.

The necessity of this restriction stems from the fact that any two courses from
disjoint student groups have either at least one common student or are taught by
a common lecturer and hence, they cannot be scheduled at the same time even in
different locations. Hence the maximum number of concurrent classes that can be
scheduled for each group (at different locations) is given by max(ai) and if each
group is allocated this number of time slots then the total sum of these maximum
values should not exceed the total number of available time slots given by |P| = k.

Capacity

Let li denote size of the largest class in group i and cj denote the capacity of room j.
Then,

∀aij, cj ≥ li (3.11)

i.e. each group should be allocated a room with adequate capacity to contain the largest
class
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Fitness Evaluation For Group Matrices

The fitness function for the first given by fA : A→ [0, 1] is constructed from the following
components:

Let:

α(aij) =

{
1 if cj ≥ tα
0 otherwise

(3.12)

where cj is the capacity of room j and tα is a parameter called the α-threshold. This
threshold is a user-defined kth percentile of all group course sizes and it, in turn, determines
which entries of the ith row of A are α-valid (i.e. satisfy the capacity constraint). The
capacity constraint defined in equation 3.11 is a special case where the threshold is defined
as the 100th percentile with tα = li (li being the maximum class size of group gi).

Then we can define the α-component of fA as:

α =

∑m
i=1

∑n
j=1 α(aij)

m× n
(3.13)

This component represents the proportion of group-to-room allocations that are valid
based on the α-threshold for each group (proportion of α-valid entries of A)

Similarly, let

Let:

β(j) =

 1 if
m∑
i=1

aij = k

0 otherwise
(3.14)

then the β-component of fA can be defined as:

β =

∑n
j=1 β(j)

n
(3.15)

i.e. the proportion of all column vectors of A whose elements sum up to less than or equal
to total available timeslots (β-valid columns).

Thirdly, let:

λ(i) =


1 if

n∑
j=1

aij = wi

0 otherwise

(3.16)

then the λ-component of fA can be defined as:
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λ =

∑m
i=1 λ(i)

m
(3.17)

i.e. the proportion of all row vectors of A whose elements sum up to exactly the required
group total contact hours (λ-valid rows)

And finally we can define the ρ-component of fA as:

ρ =

 1 if
m∑
i=1

max(ai) ≤ |P|

0 otherwise
(3.18)

Here ρ indicates whether the total time slot allocations for the different groups is feasible
according to the third clash constraint i.e. the total maximum group allocations does not
exceed the number of available time slots.

Therefore, fA can be defined as the weighted sum of the above components:

fA = ωαα+ωββ+ωλλ+ωρρ (3.19)

where ωα,ωβ,ωλand ωρ are the respective weights for each component.

Satisfying the above constraints in the initial phase of the GA produces a matrix contain-
ing feasible allocations of required group hours to appropriate rooms. This matrix is the
framework from which actual group timetables will be constructed.

3.2.3 Phase 2: Group-local Timetable Optimization

This phase deals with the actual distribution of courses for each room to optimize addi-
tional (soft) constraints. This can be done (serially or in parallel) for each group using a
GA or other assignment means. Our work uses a secondary GA to finalize the class-to-time
slot allocation and to optimize the individual group timetables.

Chromosome Encoding

Let Ti ⊂ T denote a random subset of time slots allocated to group gi, with:

|Ti| = hi =

{
gmax if gmax > max(ai)
max(ai) otherwise

(3.20)

(gmax and max(ai) are as previously defined in section 3.1.3 and 3.2.3 respectively)

Then we can represent a group timetable, Θi as an hi × n matrix of the form:
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Θi = [ckj],where ckj ∈ gi, 0 < k ≤ hi, 0 < j ≤ n (3.21)

(n = |R| as previously defined in section 3.23)

More concisely, if we let Ri denote the set of non-zero entries in the ith row of A and let
ni = |Ri|, then Θi can be re-written as the dense matrix:

Θi = [ckj],where ckj ∈ gi, 0 < k ≤ hi, 0 < j ≤ ni (3.22)

Thus cij = a indicates course a is scheduled in room j during time slot k. Therefore, Θi
represents a possible final group timetable based on the group allocation matrix A. The
overall timetable will be aggregated from the component group timetables.

Fitness Evaluation for Group Timetables

For the second phase, there are two evaluations that will contribute to the fitness function
fΘ : Θi → [0, 1] as follows:

Let θk denote the kth row of Θi. We define

µ(θk) =

{
1 if ∀x, y ∈ Z ∩ (0, ni], x 6= y =⇒ θkx 6= θky
0 otherwise

(3.23)

i.e. every entry in each row is unique. This prevents the GA from scheduling the same
course during the same timeslot. Then we can define the µ component of fθ as:

µ =

∑hi
k=1 µ(θk)

hi
(3.24)

This gives the ratio of µ-valid rows for the group timetable.

Further, let ε be defined as:

ε(ckj) =

{
1 if course ckj is schedule in preferred room
0 otherwise

(3.25)

Here preferred room is indicated by course requirements. If the course has no preferences,
any room allocation evaluates to 1. Then the ε component of fθ can be defined as:

ε =

∑hi
k=1

∑n
j=1 ε(ckj)

hi × ni
(3.26)

Therefore,
fΘ = ωµµ+ωεε (3.27)

Where, as in equation 3.19, ωµ and ωε are user defined weights.
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Phase 1 Pseudocode

Procedure 1 Optimize Group Allocation Matrix

Input: genetic_parameters: list of key-value pairs of genetic parameters
Output: group matrix chromosome

1: procedure GroupMatrixGA(genetic_parameters)
2: population ← generateInitialPopulation(parameters.pop_size)
3: if empty(population) then

4: return null
5: end if

6: elite ← getFittest(population)
7: runs ← 0
8: while runs ≤ parameters.generations & elite.fitness ≤ parame-

ters.optimal_fitness do

9: population ← evolveMatrix(population, parameters)
10: if parameters.elitism = True then

11: replace(population, elite, parameters.replacement_policy)
12: end if

13: elite ← getFittest(population)
14: runs ← runs + 1
15: end while

16: return elite
17: end procedure
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Phase 2 Pseudocode

Procedure 2 Group-Local Timetable Optimization

Input: group_matrix: group matrix chromosome, timeslots: list of time slot values,
student_groups: set of student group partitions, parameters:list of key-value pairs of
genetic parameters

Output: NULL

1: procedureGroupTimetableGA(group_matrix, timeslots, student_groups, parameters)
2: timeslots ← randomize(timeslots)
3: start_index ← 0
4: for all group in student_groups do

5: group.allocation_vector ← group_matrix[group.id]
6: slot_count ← max(getGmax(group), getMaxCourseHours(group))
7: end_index ← start_index + slot_count
8: if start_index > timeslots.size then

9: assignTimeslots(group, timeslots[timeslot.size-count : timeslot.size])
10: else

11: assignTimeslots(group, timeslots[start_index : end_index])
12: start_index ← start_index + count
13: end if

14: group_timetable = evolveTimetable(group, parameters)
15: write(group_timetable)
16: end for

17: return NULL
18: end procedure

The evolveTimetable algorithm is the same for both phases (Procedure 1) with modifi-
cations made to the mutation and crossover algorithms (see Appendix A).
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3.2.4 Implementation and Results

A prototype of the algorithm was developed using Python 3.4 as a programming language
with Numpy 1.91 for matrix manipulation and MySQL 5.6.12 as a database backend.
The choice of language was influenced by Python’s consiseness, prototyping prowess and
availability of well supported third-party packages. The prototype was first tested4 using
a subset of real-world data obtained from the University of Malawi, Chancellor College.
The data consisted 46 courses partitioned into 16 student groups to be allocated into 19
rooms and a total of 45 weekly hours (9 hours per day, 5 days a week). The prototype was
then run on a larger data set (100 courses, 41 rooms, 22 student groups and 60 weekly
hours) to test its scalability. Sample timetables were generated in both cases.

In the former case, the prototype was run to satisfy H on four different values of α-
threshold; 75th, 80th and 100th percentile. As outlined in section 3.2.2, a feasible timetable
with xth percentile for α-threshold implies that x% of the classes in the group are expected
to fit in all of the group’s allocated rooms. As an example, for the 80th percentile, an
allocation of hi hours of group gi in room ri indicates that at least 80% of the courses in
that group will fit in that room given that the group allocation has fitness of 1.0. This
is to allow more flexibility in the algorithm. All runs were performed with the following
genetic parameter values: (i) Populations size: 50, (ii) Crossover rate: 0.2, (iii) Mutation
rate: 0.1, (iv) Tournament size: 10, (v) Generations: 1500, (vi) Elitism: true, (vii) Elitist
replacement policy: random. Weights for fA were assigned based on relative importance
of the components. On the other hand, fΘ only considered one component due to lack
of preference information necessary to for the inclusion of ε. The fitness functions used
were as follows:

fA = 0.3α+ 0.15β+ 0.05λ+ 0.5ρ (3.28)

fΘ = 1.0µ (3.29)

Below are the data statistics and trends obtained from the different runs:

4Testing was done on a Zinox computer, with Intel’s CORE i7 processor (2 physical cores, 4 logical
cores, 4GB RAM running Windows 7 Professional Version.
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Figure 3.1: Student group statistics

Figure 3.2: Student group statistics (larger data set)
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Figure 3.3: Trend: (α-threshold at 75th percentile)

Figure 3.4: Trend: (α-threshold at 80th percentile)
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Figure 3.5: Trend: (α-threshold at 100th percentile)

Figure 3.6: Trend (sample group timetable generation)
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Figure 3.7: Trend (larger data set)

3.2.5 Performance Analysis

The results for the smaller data set show that the algorithm is able to attain the maximum
fitness value of 1.0 for moderate α-threshold values (e.g. 50th and 80th). The two-
dimensional nature of chromosome encoding implies that the most intensive computations
(e.g. crossover and mutation) are O(n2). This can be clearly seen in the mutation
and crossover algorithms (see Appendix A). Holding the population size constant, the
computational complexity of the algorithm should scale quadratically with increasing
input data (number of courses and rooms). The running time averages 4 minutes and 7
minutes for the smaller and larger data sets respectively on a quad-core, hyper-threaded
Intel Core i7 processor. Given the vast nature of the space, this reduced time may be
attributed to the ‘pruned’ search space within which the algorithm operates.

Figures 3.3 to 3.5 show that the general trend of evolution for all trials follows an initial
quadratic increase in fitness with a steep rise in the trend that coincides with a jump in
ρ value. The graphs also show that the search proceeds steadily without a drop in fitness
between generations. This general increasing trend is a direct consequence of elitism,
which maintains the best chromosome between consecutive generations. However, periodic
samples of chromosome generations for all cases (see Appendix A) indicate a constant
value of 1.0 for both β and λ components. This implies that the initial chromosome
populations satisfies all hours−per− room allocation constraints and that all hours for
each group are fully scheduled.
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Additionally, a closer examination of the data will reveal an inverse relationship between
α-threshold and the probability of convergence on an optimal fitness. The higher the
α-threshold value, the less likely it is to locate a feasible allocation. This is an instance of
conflicting constraints i.e. the stricter the rule on room capacity, the harder it is to find
a feasible allocation with each allocated course fitting into its respective room.

An instance of this scenario can be seen in the results obtained for α-threshold value of
100th percentile as shown in Figure 3.5. A number of runs were performed at this threshold
with no significant improvement in the final optimal fitness value (approx. 0.50). A similar
trend was also observed for the larger data set (Figure 3.15). This is a consequence of the
inadequate time slots relative to the number of courses that require scheduling (condition
3 necessary for non-existence of feasible timetable). The effect of this is seen in the output
timetables where a number of (peer) courses register time clashes.

Finally, Figure 3.6 shows a sample trend generated by a secondary GA that is optimizing
a group timetable in phase 2. It is worth noting that the trend only displays fitness values
solely based on µ. This is due to the unavailability of departmental preference information
in the source data. This case shows a maximum fitness value of 0.875, which indicates
0.115 odds of finding a time clash among peer courses within the group.

3.2.6 Parallel/Distributed Algorithm

The approach and representation chosen for the serial algorithm offer opportunities for
single-instruction, multiple data (SIMD) parallelization that can be exploited to speed
up convergence on parallel/distributed architectures. The most promising parts for par-
allelization include:

1. Fitness evaluation, mutation and crossover for group allocation matrix and group
timetables

2. Group timetable optimization

For group-local timetable optimization, each ith row of A (for group gi) will be mapped
as a separate input split onto a processing node for group timetable generation. Results
will be written to separate file for each group and merged either at runtime or manually
after execution. The parallelization strategy can be diagrammatically represented as in
Figure 3.8 below:
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Figure 3.8: Parallel/distributed GA Model

This parallelization scheme offers a great deal of flexibility in terms of implementation
technology and platform. It can be implemented on a distributed computing platform
or on a single node with multi-core processors depending on resource availability. It is
worth noting that the level of parallelization in the proposed scheme is limited by the serial
phase (phase 1) i.e. generation of the group allocation matrix. Since this phase represents
approximately 50% of the whole algorithm, by Amdahl’s law, the speedup achieved by an
embarrassingly parallel implementation of phase 2 only should be at most:

lim
n→∞

1

0.5+ 1−0.5
n

= 2 (3.30)

where n is the number of processing elements used.

However, given the nature of the chromosome encoding scheme (and the genetic oper-
ator algorithms), phase 1 can also be parallelized to take advantage of multi-processing
architectures thereby increasing the speedup beyond the predicted theoretical limit of 2.

Below is the pseudocode for the main parallel/distributed algorithm. Appendix A contains
pseudocode for the procedures called by the algorithm.
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Pseudocode For Parallel/Distributed Algorithm

Procedure 3 Main DGA/PGA

1: procedure ParallelGA(constraints)
2: parameters ← getParametersInput()
3: group_matrix ← GroupMatrixGA(parameters)
4: if group_matrix.rho_value > 0 then
5: initializeGroups(group_matrix, constraints.timeslots, constraints.student_groups)
6: for all group in constraints.student_groups in PARALLEL do
7: group_timetable ← evolveTimetable(group)
8: group_file ← group.unique_id
9: write(group_timetable, group_file)
10: end for
11: else
12: print(NoOptimalSolutionError)
13: end if
14: end procedure

Procedure 4 Initialize Student Groups Using Group Matrix

1: procedure initializeGroups(group_matrix, timeslots, student_groups)

2: timeslots ← randomize(timeslots)

3: start_index ← 0

4: for all group in student_groups do

5: group.allocation_vector ← group_matrix[group]

6: slot_count ← max(getGmax(group), getMaxCourseHours(group))

7: end_index ← start_index + slot_count

8: if start_index > timeslots.size then

9: assignTimeslots(group, timeslots[timeslot.size-count : timeslot.size])

10: else

11: assignTimeslots(group, timeslots[start_index : end_index])

12: start_index ← start_index + count

13: end if

14: end for

15: end procedure
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Chapter 4

Conclusion

4.1 Summary

Timetabling presents a complicated constraint satisfaction problem that requires efficient
algorithms to solve. Genetic algorithms offer a promising mechanism due to their ability
to handle complicated search spaces. Our work proposes a theoretical framework to guide
application of GAs to the timetabling problem. It is observed that, with this framework
as the basis, an efficient algorithm can be designed that will converge to an optimal or
Pareto solution in polynomial time. The work also shows that the choice of chromosome
encoding has a great impact on algorithm performance and scalability. Our work adopts
a matrix-based encoding scheme which lends itself to almost effortless parallelization, a
factor that is exploited in the proposed parallel/distributed algorithm. The scheme also
allows for simple mathematical expression of constraints for efficient evaluation.

In addition, we note that timetabling requires balancing several parameters given that
most real-world problems present inherently insufficient resources and conflicting con-
straints and preferences. In this case, an algorithm should be able to settle for a Pareto
allocation of resources i.e. an optimal equilibrium where one resource cannot be re-
allocated without negatively affecting other allocations.

Finally, our work on parallel/distributed algorithm reveals that speedup can be increased
by a theoretical factor of two if only the second phase of the algorithm is parallelized.
Given that this factor is too small to justify the parallelization efforts, we suggest fur-
ther increasing the parallel footprint of the algorithm by implementing the basic genetic
operators on multiprocessing platforms. This approach has the potential to boost the
theoretical speedup limit by a significant factor.
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4.2 Limitations and Future Work

The approach explored in this paper is applicable within a number of limitations. Perhaps
the most important limitation is the assumption of existence of student group informa-
tion prior to generation of the group allocation matrix. In most cases, the problem of
generating student groups information is separated from the timetabling problem and
it is usually done prior to timetable generation. However, in the absence of such prior
information, the algorithm requires a supplementary partitioning algorithm (e.g. graph
colouring) to generate the initial input.

Another limitation is the serial nature of phase 1 of the algorithm. This arises due
to the need to have all student group information available in one ‘space’ to generate
a feasible group allocation matrix. Massive parallelization of this phase would require
intricate levels of inter-process interaction and synchronization, two factors that may lead
to communication overheads and reduced efficiency. However, future work may explore
this option to test different interaction and synchronization schemes and their effects on
efficiency and convergence.
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Appendix A

Algorithms and Sample Output

A.1 Pseudocode

Procedure 5 Phase 1: Mutation Algorithm

Input: chromosome: group matrix chromosome, mutation_rate: float value

Output: NULL

1: procedure mutateMatrix (chromosome,mutation_rate)

2: re-evalute_flag ← FALSE

3: if randomFloat(0,1) ≤ mutation_rate then

4: re-evaluate_flag ← TRUE

5: for all row in chromosome do

6: for all column in row do

7: if chromosome[row][column] 6= 0 then

8: delta ← randomInteger(0, chromosome[row][column])

9: chromosome[row][column] ← chromosome[row][column] - delta

10: repair_allele := getRandomAllele(chromosome)

11: chromosome.repair_allele ← chromosome.repair_allele + delta

12: end if

13: end for

14: end for

15: end if

16: return NULL

17: end procedure
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Procedure 6 Phase 1: Crossover Algorithm

Input: parent1, parent2: group matrix chromosome, crossover_rate: float value

Output: NULL

1: procedure crossoverMatrix (parent1, parent2, crossover_rate)

2: if crossover_rate = 0 and parent1.size 6= parent2.size then

3: return

4: end if

5: for all row in parent1 do

6: for all column in row do

7: if parent1[row][column] != parent2[row][column] AND randomFloat(0,1) <=

crossover_rate then

8: if parent1[row][column] > parent2[row][column] then

9: diff ← parent1[row][column] - parent2[row][column]

10: parent1[row][column] ← parent2[row][column]

11: repair_allele ← getRandomElement(parent1)

12: repair_allele ← repair_allele + diff

13: else

14: diff ← parent2[row][column] - parent1[row][column]

15: parent2[row][column] ← parent1[row][column]

16: repair_allele ← getRandomAllele(parent2)

17: repair_allele ← repair_allele + diff

18: end if

19: end if

20: end for

21: end for

22: return NULL

23: end procedure
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Procedure 7 Phase 2: Crossover Algorithm

Input: parent1, parent2: group timetable chromosome, crossover_rate: float value

Output: NULL

1: procedure crossoverTimetable(parent1, parent2, crossover_rate)

2: if crossover_rate = 0 or parent1.size 6= parent2.size then

3: return

4: end if

5: for all column in parent1 do:

6: if randomFloat(0,1) ≤ crossover_rate then

7: swap(parent1.column, parent2.column)

8: end if

9: end for

10: return NULL

11: end procedure

Procedure 8 Phase 2: Mutation Algorithm

Input: chromosome: group timetable chromosome, mutation_rate: float value

Output: NULL

1: procedure mutateTimetable(chromosome,mutation_rate)

2: re-evaluate_flag ← FALSE

3: for all column in chromosome do:

4: if randomFloat(0,1) ≤ mutation_rate then:

5: re-evaluate_flag = TRUE

6: randomize(column)

7: end if

8: end for

9: return NULL

10: end procedure
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Procedure 9 Evolve Group Allocation Matrix Population

Input: population: list of group matrix chromosomes, parameters: list of key-value pairs of

genetic parameters

Output: list of group matrix chromosomes

1: procedure evolveMatrix (population, parameters)

2: new_population:LIST

3: while space ≥ 0 do

4: parent1 ← tournamentSelect(population, parameters.tournament_size)

5: parent2 ← tournamentSelect(population, parameters.tournament_size)

6: crossoverMatrix(parent1, parent2, parameters.crossover_rate)

7: mutateMatrix(parent1, parameters.mutation_rate)

8: mutateMatrix(parent2, parameters.mutation_rate)

9: parent1.fitness = evaluateFitness(parent1)

10: parent2.fitness = evaluateFitness(parent2)

11: new_population.append(getFittest(parent1,parent2))

12: end while

13: return new_population

14: end procedure
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A.2 Output data samples

Figure A.1: Periodic data sample (α-threshold at 75th percentile)
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Figure A.2: Periodic data sample (α-threshold at 80th percentile)
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Figure A.3: Periodic data sample (α-threshold at 100th percentile)
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Figure A.4: Group timetable data (sample group timetable generation)
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Figure A.5: Periodic sample (larger data set)
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A.3 Sample output matrices

Figure A.6: Group allocation matrix (α-threshold at 75th percentile)

Figure A.7: Group allocation matrix (α-threshold at 80th percentile)
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Figure A.8: Group allocation matrix (α-threshold at 100th percentile)

44



Figure A.9: Group allocation matrix (larger data set)
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Figure A.10: Sample timetable for smaller data set (red marks indicate clashes)
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