

A CLOUD-BASED JAVA COMPILER FOR SMART DEVICES

A thesis presented to the Department of

Computer Science

African University of Science and Technology

In Partial Fulfilment of the Requirements for the Degree of

Master of Science

Submitted by

Mohammed Tanko Yahaya

JUNE, 2016

A CLOUD-BASED JAVA COMPILER FOR SMART DEVICES

By

Mohammed Tanko Yahaya

A THESIS APPROVED BY THE COMPUTER SCIENCE DEPARTMENT

RECOMMENDED: ________________________________

Supervisor, Professor Mohamed Hamada

Head, Department of Computer Science

APPROVED: ________________________________

Chief Academic Officer

Date

iii

Abstract

The Java programming language is widely used in industry and business. Therefore,

academic institutions worldwide include Java learning as a basic part of their Computer

Science and Engineering curricula. At the same time, smart devices have become popular

among university learners. This research tries to take advantage of this fact to promote Java

learning. The main problem is that we cannot compile Java programs on smart devices due to

the technical limitations of such devices. This research aims to leverage cloud computing, the

availability, prevalence and affordability of smart devices and the ever-growing market of

Android devices to provide users with text editors to create and modify Java programs and

save them to a server. Users can also compile and execute created programs. A web-based

version of the application is also provided for users who do not use Android devices that can

be accessed via a browser on a PC or Smart device. The system uses an existing online

compiler. The developed cloud-based compiler can be integrated into a smart multimedia

learning system for learning the Java programming language.

iv

Acknowledgement

Firstly I thank Almighty Allah, to whom all praise is due, the most beneficent, the most

merciful, and the lord of the worlds for sparing my life and enabling me complete this Master

of Science degree program in good health. You make my impossible possible, you make me

determined, I lay under your supportive umbrella I cannot pay for but rather I do what you

command me to do.

To my father, Alhaji Tanko Yahaya, my mother, Hajiya Mariam Mohammed, my brothers

and sisters, I appreciate your prayers, advices, financial and mental support before and during

the course of my program. I pray Allah rewards you all abundantly.

I thank the Nelson Mandela Institution (NMI) considering me worthy of a scholarship for my

Master of Science degree program out of many other qualified candidates who merited this

award. Your faith in me has and will continue to yield the expected dividends.

I would like to express my deepest appreciation to my supervisor Professor Mohamed

Hamada whom without his guidance, encouragement and persistence this thesis would not

have been possible. He continually and convincingly a spirit of adventure in regard to

research and also find enough time to give me detailed explanations, suggestion and

directions. Thank you so much sir.

My profound gratitude goes to all the faculties in Computer Science and Engineering

department especially Professor Mamadou Kaba Traore, Professor Lehel Csato, Professor

Ben Abdallah and Professor Mohamed Hamada who happens to be my supervisor. I

appreciate your constructive criticisms and the knowledge you impacted on me.

v

I wish to thank my friends namely Mohammed Audu Galadima, Ibrahim Bright Mohammed,

Salaudeen Rabiu Niyi, Habib Itopa Mohammed, for their help, words of encouragement and

prayers throughout the period of my program.

To the entire management and staffs of African University of Science and Technology,

Galadimawa Abuja Nigeria, I say a very big thank you for providing a conducive learning

and research environment for me and my colleagues to run our Master of Science program.

Of course I would like to thank my course mates, PhD students in the Department of

Computer Science and Engineering and the entire students of the African University of

Science and Technology Galadimawa, Abuja, Nigeria. You all made my stay here one I will

always remember.

vi

Dedication

This thesis is dedicated to my beloved parents Alhaji Tanko Yahaya and Hajiya Maryam

Mohammed.

vii

Table of Contents

Abstract .. iii

Acknowledgement .. iv

Dedication ... vi

List of figures .. ix

List of tables ... x

List of abbreviations ... xi

CHAPTER ONE: INTRODUCTION .. 1

1.0 Learning technology in the 21st century ... 1

1.0.1 Mobile technology and mobile learning ... 2

1.0.2 Smartphone OS market share ... 4

1.0.3 The future of learning technology .. 5

1.1 Multimedia learning systems... 6

1. 2 Java programming language .. 7

1. 3 Problem statement ... 7

1.4 Purpose of the research.. 7

1.5 Target operating system .. 8

1.6 Expected results and deliveries ... 8

1.7 Scope of the work .. 8

1.8 Thesis structure.. 8

CHAPTER TWO: LITERATURE REVIEW ... 10

2.0 Introduction ... 10

2.1 Compilers .. 10

2.1.1 Compiler architecture ... 10

2.1.2 Phases of a compiler ... 12

2.2 Concept of cloud computing .. 12

2.2.1 Types of cloud computing .. 15

2.2.1.1 Location of the cloud .. 15

2.3 Android operating system ... 17

2.4 Review of existing works .. 19

2.4.1 Online C/C++ compiler using cloud computing ... 19

2.4.2 Cloud Compiler Based on Android .. 22

2.4.3 Cloud-based “C - Programming” Android application framework 26

2.5 Proposed solution to limitations of the existing works ... 29

viii

CHAPTER THREE: RESEARCH METHODOLOGY, SYSTEM DESCRIPTION AND

ARCHITECTURE .. 30

3.0 Introduction ... 30

3.1 Sphere Engine.. 31

3.1.1 Sphere Engine API ... 31

3.1.2 Sphere Engine API methods .. 33

3.1.3 Status and result ... 38

3.2 Description of the system .. 40

3.2.1 Functionalities of the system .. 40

3.2.2 Architecture of the system .. 41

3.2.3 Dataflow diagram ... 44

3.2.4 Functional requirements ... 45

3.2.5 Other requirements ... 45

3.2.6 Database design .. 46

CHAPTER FOUR: IMPLEMENTATION OF THE SYSTEM ... 49

4.0 Introduction ... 49

4.1 jsTree ... 49

4.2 EditArea Javascript editor ... 50

4.3 The interfaces .. 52

4.3.1 Web browser interface ... 52

4.3.2 Android interface .. 53

4.4 Software tools used ... 57

4.5 System testing.. 59

CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 61

5.0 Summary of results obtained ... 61

5.1 Conclusions ... 62

5.2 Limitations of the system .. 62

5.3 Recommendations and future work ... 62

References .. 64

Appendix A .. 67

Appendix B .. 80

ix

List of figures

Figure 1.1: Global desktop and mobile device ownership ... 3

Figure 1.2: Global device ownership by age .. 4

Figure 1.3: Percentage of smart device OS users in 2012 .. 5

Figure 2.1: How a compiler works ... 11

Figure 2.2: Architecture of a compiler ... 11

Figure 2.3: Cloud services .. 17

Figure 2.4: Layers of the Android OS .. 18

Figure 2.5: Architecture of the project ... 21

Figure 2.6: Architecture of the system ... 24

Figure 2.7: Dataflow diagram of the system .. 25

Figure 2.8: System Architecture ... 27

Figure 2.9: Dataflow diagram of the system .. 28

Figure 3.1: Architecture of the system ... 42

Figure 3.2: Dataflow diagram of the system .. 44

Figure 3.3: Entity relationship diagram of the system ... 47

Figure 4.1: jsTree directory .. 50

Figure 4.2: EditArea Javascript editor .. 51

Figure 4.3: Components of the Compile area ... 53

Figure 4.4: Execution region of the Compile Area .. 53

Figure 4.5: Components of the Android application interface ... 54

Figure 4.6: Editor Area of the Android Interface ... 55

Figure 4.7: Run/Compile region of the Android interface ... 56

Figure 4.8: Execution region of the Android interface ... 57

x

List of tables

Table 2.1: Compiler phases and their description ... 12

Table 3.1: Return value for supported languages .. 34

Table 3.2: Parameters for the Submission Method ... 35

Table 3.3: Return value for the submission method ... 35

Table 3.4: Error returned by the submission method .. 35

Table 3.5: Parameters accepted by the fetch submission method 36

Table 3.6: Return values for the fetch submission method ... 37

Table 3.7: Status variable values ... 39

Table 3.8: Result variable values .. 39

Table 3.9: Error codes meaning .. 39

xi

List of abbreviations

AJAX Asynchronous Javascript and XML

AMD Asynchronous Module Definition

API Application Programming Interface

BSD Berkley Software Distribution

CARET Center for Applied Research in Educational Technology

COBRA Common Object Request Broker Architecture

CRM Customer Relationship Management

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheets

DVM Dalvik Virtual Machine

HTML HyperText Markup Language

HTTPS HyperText Transfer Protocol

IaaS Infrastructure as a service

IDC International Data Corporation

IDE Integrated Development Environment

JVM Java Virtual Machine

LAN Local Area Network

LGPL Lesser General Public License

MIT Massachusetts Institute of Technology

MOOC Massive Open Online Courses

NMI Nelson Mandela Institution

OHA Open Handset Alliance

PaaS Platform as a Service

PC Personal Computer

PDA Personal Digital Assistant

PHP HyperText Preprocessor

RAM Random Access Memory

REST Representational State Transfer

xii

RPC Remote Procedure Call

SaaS Software as a Service

SDK Software Development Kit

SOAP Simple Object Access Protocol

URL

WYSIWYG

Uniform Resource Locator

What You See is What You Get

1

CHAPTER ONE: INTRODUCTION

In this chapter we examine learning technologies in the 21
st
 century and how they affect

learning among students. We also discuss mobile technology, mobile learning and

multimedia learning systems. The chapter also discusses the increased use of smart mobile

devices, the future of learning technologies and how we can leverage them to improve the use

of mobile learning. These discussions lead us to formulate and present our problem statement

as well as our aims and objectives.

1.0 Learning technology in the 21st century

Technology is found in most parts of our lives. Most homes have connected computers or

internet-enabled devices (smart devices). Technology plays a very important role in 21
st

century education. When integrated into the curriculum, technology revolutionizes the

learning process. More and more studies show that technology integration in the curriculum

improves students’ learning processes and outcomes. Teachers who recognize computers as

problem-solving tools change the way they teach. They move from a behavioural approach to

a more constructivist approach.

Technology and interactive multimedia are conducive to project-based learning. Students are

engaged in their learning using these powerful tools, and can become creators and critics

instead of just consumers. Technology helps change student/teacher roles and relationships:

students take responsibility for their learning outcomes, while teachers become guides and

facilitators. Technology lends itself as the multidimensional tool that assists that process. For

economically disadvantaged students, the school may be the only place where they will have

the opportunity to use a computer and integrate technology into their learning. There is a

growing body of evidence that technology integration positively affects student achievement

2

and academic performance. The Center for Applied Research in Educational Technology

(CARET) found that, when used in collaborative learning methods and leadership aimed at

improving the school through technology planning, technology impacts achievement in

content area learning, promotes higher-order thinking and problem-solving skills, and

prepares students for the workforce [5].

1.0.1 Mobile technology and mobile learning

The availability, prevalence and affordability of mobile phones, tablets and other connected

devices have been on the increase over the last two decades. With this, wireless technology

can dramatically improve learning and bring digital content to students. Students engage with

mobile technology and use it regularly in their personal lives for taking pictures, playing

games, using social media and so on. Effective use of mobile technology is less about the

tools and more about learners’ digital literacy skills, including the ability to access, manage

and evaluate digital resources [7].

Berking et al. in [8] define mobile learning as “leveraging ubiquitous mobile technology for

the adoption of or augmentation of knowledge, behaviors, or skills through education,

training, or performance support while mobility of the learner may be independent of time,

location, and space”.

Mobile learning according to the author in [6], “encompasses the usage of portable

computing devices (such as iPads, laptops, tablet PCs, PDAs, smart phones) with wireless

networks to enable mobility, mobile learning, allowing teaching and learning to extend to

spaces beyond the traditional classroom”.

3

As an integral part of students’ daily lives, mobile technology has changed how they

communicate, gather information, allocate time and attention and potentially how they learn.

The mobile platform’s unique capabilities, including connectivity, cameras, sensors and GPS

have great potential to enrich the academic experience of learners. This is according to the

result of a research carried out by [7].

Global mobile device ownership is high and continues to increase. The figures below give the

growth rate of mobile devices and an estimated number of users among different age groups.

Figure 1.1: Global desktop and mobile device ownership

4

Figure 1.2: Global device ownership by age

1.0.2 Smartphone OS market share

In the year 2015, the worldwide smartphone market grew by 13.0% year on year with 341.5

million shipments, according to data from the International Data Corporation (IDC)

Worldwide Quarterly Mobile Phone Tracker. In the past few years, the Android operating

system has begun to dominate the world of smart devices – phones and tablets [12]. The

figure below shows the percentage of smart devices that run on the various operating

systems, obtained in the year 2015 according to Forbes.

5

Figure 1.3: Percentage of smart device OS users in 2012

Source: Trefis Team, 2015

As at the first quarter of the year 2015, Android dominated the smartphone market with a

share of 82.8% [12]. The Android OS market share has been on the rise over in the past few

years and is projected to keep rising.

1.0.3 The future of learning technology

The learning and development world has evolved rapidly during the last four to five years.

There are many online learning platforms such as Khan Academy (www.khanacademy.com),

Cousera (www.cousera.org) that offer video-based learning and Massive Open Online

Courses (MOOCs). Then there is learning delivered through smartphones, tablets and cloud-

based applications, not to mention the increase in webinars, podcasts and social media-based

offerings across the digital world.

6

Technological advances, internet access and mobile device usage all play a significant role in

enabling scalable access of learning across the globe. However, while organizations have

started investing in these areas, there is still a low adoption of e-learning [9].

With the rapid growth of internet-enabled devices, it is important to note the future of

learning technology is very bright. By developing more e-learning platforms in addition to

the existing ones and motivating both learners and trainees to adopt these platforms, the many

benefits associated with learning technologies can be achieved.

1.1 Multimedia learning systems

Mayer and Moreno define multimedia as “any computer-mediated software or interactive

application that integrates text, color, graphical images, animation, audio sound, and full

motion video in a single application”. Multimedia learning systems consist of animation and

narration, which offer potential avenues for improving student understanding [29].

With the rapid advances the internet and information and communications technology have

made, it has become extremely important to utilize these technologies to enhance teaching,

learning and education. This will be of immense value to both the educator and the learner.

For educators, it makes available a convenient platform to present information in interactive

and media-enhanced formats in contrast to the usual methods they are used to. For learners,

information offered through these channels and methods is easier to understand, deal with

and retrieve, and this in turn improves the whole learning process for all parties.

Multimedia has the potential to create high-quality learning environments, with the ability to

create a more realistic learning context through different media. It also helps by allowing a

teacher to take better control of the classroom, especially when the class size is large.

7

1. 2 Java programming language

Java is a programming language first developed by James Gosling at Sun Microsystems,

which is now a part of Oracle Corporation. It was released in 1995 as a part of Sun

Microsystems’ Java platform. Much of its syntax is derived from C and C++. Java

applications are usually compiled to bytecode (a class file) that can run on any Java Virtual

Machine (JVM). Java is currently one of the most popular programming languages in use

[10].

1. 3 Problem statement

In view of the important role learning technology plays in education in the 21
st
 century

coupled with the relative affordability and affordability of internet-enabled smart devices, it

has become imperative to develop a smart multimedia learning system for the Java

programming language which comprises a lecture slides module, a reading topics module, a

flash cards module, video lectures module, and an integrated development environment (IDE)

module for learning, compiling and running Java programs on learners’ smart devices.

This research focuses on the development of a cloud-based compiler for smart devices to

compile and run Java programs on learners’ smart devices which would be incorporated into

a smart multimedia learning system for the Java programming language, together with other

components in the future.

1.4 Purpose of the research

The research aims to achieve the following:

a. Design and develop an IDE for the Java language to run on smart devices on a chosen

operating system.

b. Implement a cloud-based server that hosts the Java compiler.

https://simple.wikipedia.org/wiki/Programming_language
https://simple.wikipedia.org/wiki/James_Gosling
https://simple.wikipedia.org/wiki/Sun_Microsystems
https://simple.wikipedia.org/wiki/Oracle_Corporation
https://simple.wikipedia.org/w/index.php?title=Java_%28software_platform%29&action=edit&redlink=1
https://simple.wikipedia.org/w/index.php?title=Syntax_%28programming_languages%29&action=edit&redlink=1
https://simple.wikipedia.org/wiki/C_%28programming_language%29
https://simple.wikipedia.org/wiki/C%2B%2B
https://simple.wikipedia.org/wiki/Computer_program
https://simple.wikipedia.org/wiki/Compiler
https://simple.wikipedia.org/w/index.php?title=Java_bytecode&action=edit&redlink=1
https://simple.wikipedia.org/w/index.php?title=Class_%28file_format%29&action=edit&redlink=1
https://simple.wikipedia.org/wiki/Java_Virtual_Machine
https://simple.wikipedia.org/wiki/Java_Virtual_Machine

8

1.5 Target operating system

Android is an open-source operating system introduced by Google and the OHA (Open

Handset Alliance) in September 2008. It is the most widely used mobile operating system,

with more than 80% of the world’s mobile operating systems being Android. The popularity

of the Android OS, its affordability and readily available programming kits makes it an easy

choice for this research. Although the application to be developed is targeted for the Android

OS, a web-based version is also to be developed for non-Android users.

1.6 Expected results and deliveries

The following are the expected deliverables of this research

1. An Android application via which a user can type a program in Java and press a

compile button to send the written code to the cloud server for processing.

2. A web-based version of the developed Android application

1.7 Scope of the work

This research entails the development of a mobile application to compile and run Java on

smart devices. A web-based version of the application was also built for those who do not use

the target operating system the application was built on. The server side of the project could

not be completed in time and as a result an existing online compiler was used to achieve the

results.

1.8 Thesis structure

Chapter 2 gives an insight into concepts relating to compilers, cloud-based computing, the

Android operating system and a review of current literature.

Chapter 3 discusses the research methodologies, architecture and describes the system.

9

Chapter 4 gives a detailed discussion of the implementation of the system.

Chapter 5 rounds up by discussing results, summary, conclusions and suggestions for future

work.

10

CHAPTER TWO: LITERATURE REVIEW

2.0 Introduction

There are certain concepts relating to cloud-based compilers for smart devices. This chapter

discusses these concepts which include compilers and how they work, cloud computing and

the Android operating system.

This chapter also reviews existing work relating to cloud-based compilers, their weaknesses

and how the system to be developed intends to solve these weaknesses.

2.1 Compilers

Computer programs are formulated in a programming language and specify classes of

computing processes. Computers, however, interpret sequences of particular instructions, but

not program texts. Therefore, the program text must be translated into a suitable instruction

sequence before it can be processed by a computer. This translation can be automated, which

implies that it can be formulated as a program itself. The translation program is called a

compiler, and the text to be translated is called source text (or sometimes source code) [13].

2.1.1 Compiler architecture

Compilers are used to compile programs and convert them from written program to

executable binaries. In other words, a compiler is a program that reads a program written in

one language and translates it into another language. The compiler creates executable files

which can then be run in order to execute the program and its instructions.

11

Figure 2.1: How a compiler works

Every compiler primarily consists of three parts:

1. The Front end: This checks the semantics and syntax of the higher level code

(written by the user). Other functions like type checking and error reporting are also

performed by the front end.

2. The Middle end: This performs the optimization through removal of redundant code,

or relocation of computation depending on the context.

3. The Back end: This is the part where the translation of the language actually takes

place.

Figure 2.2: Architecture of a compiler

12

2.1.2 Phases of a compiler

The compiler has a number of phases plus a symbol table manager and error handler. This

modularization is typical of many real compilers. The authors in [11] and [14] describe the

phases of a compiler which are summarized in the table below.

Table 2.1: Compiler phases and their description

S/N PHASE DESCRIPTION

1. Lexical Analyzer Break the source file into individual words, or tokens.

2. Syntax Analyzer Analyze the phrase structure of the program.

3. Semantics Analyzer Build a piece of abstract syntax tree corresponding to each

phrase.

Determine what each phrase means, relate uses of variables to

their definitions, check types of expressions, and request

translation of each phrase.

4. Intermediate Code

Generator

Transforms parse tree into intermediate language which

represents source code program

5. Code Optimizer Optimizes intermediate codes and produces fast running

machine codes

6. Code Generator Produces re-locatable machine codes or assembly codes

7. Target Language

2.2 Concept of cloud computing

Cloud computing according to the author in [15] refers to “flexible self-service, network-

accessible computing resource pools that can be allocated to meet demand”. Services are

flexible because the resources and processing power available to each can be adjusted “on the

fly” to meet changes in need or based on configuration settings in an administrative interface,

without the need for direct IT personnel involvement. These resources are assigned from a

larger pool of available capacity (for example memory, storage, CPUs) as needed, allowing

an organization to spin up a proof-of-concept application, expand that to a full prototype, and

then roll it out for full use without having to consider whether existing hardware, data centre

space, power and cooling are capable of handling the load. Cloud computing allows the

13

allocation of resources to be adjusted as needed, creating a hardware-independent framework

for future growth and development.

Almost anything can be hosted in the cloud, from databases and applications to complete

virtual infrastructures encompassing data storage, networking and all components of the

server environment. The cloud can also host virtualized user desktop environments available

from any networked client device, whether or not the client has sufficient local resources to

host the virtualized desktop environment and its various applications.

Cloud computing goes beyond simply hosting a website or database service on a machine

located in a remote data centre, with early cloud services such as Google Gmail and Google

Apps demonstrating the power of cloud computing, starting in 2006. Cloud computing

solutions have several common characteristics, regardless of their form [15]. They include:

Managed by the provider – cloud computing services are managed by the cloud provider.

Once applications and services have been moved to external cloud computing, an

organization no longer needs to worry about local data centre issues regarding power, space

and cooling, and developers need only know whether their applications will be running on

one cloud service platform or another [15].

Flexible resource assignment – the capacity and resources available to cloud computing

services can be increased or decreased, with costs adjusted according to actual consumption.

This allows an organization to spin up a new offering with only minimal costs for the

resources used and then to meet spikes or cyclic use patterns with increased capacity, paying

for only the level of use needed. Traditional data centres must always plan for future growth,

and a sudden success for a web-based offering can rapidly overrun available server and

network capacity unless data centre managers purchase sufficient “spare” resources

14

beforehand. Cloud computing draws resources from a pool as they are needed, based on the

level of service consumption. This is similar to the way power companies supply power to

individual organizations, billing each according to its individual use. For example, a new

cloud application might experience a sudden increase in use following mention on a popular

blog and require additional network bandwidth, data storage, server memory or CPU power

to keep up with the sudden increase in demand. Traditional data centres would be limited by

hardware constraints, while cloud computing alternatives can simply add CPUs or expand

available database file storage up to predefined limits when needed and then shrink back after

the storm of access has passed to manage on-demand costs [15].

Network accessible – cloud services are available via networked devices and technologies,

facilitating rapid access by mobile customers and remote office locations. This provides an

“anywhere, anytime” service model not possible in traditional data centres, where service

downtime and local area outages in power and networking can impact uptime. Because cloud

computing vendors can be located anywhere in the world, they can host organizational

services from areas outside geopolitical turmoil or environmental threats. Before a hurricane,

for example, a cloud service provider could transfer operations from Florida to Washington

transparently to the service consumer [15].

Sustainable – because cloud providers can provide resources at need, it is possible to reduce

power and cooling requirements during off-peak times, gaining economies of scale well

beyond those available to single-tenanted hardware-based data services, which must stay on,

waiting for later use. The flexibility in cloud hosting location allows providers to shift

operations without disruption to consumers. They can move data centre activity seasonally to

save on cooling costs or transfer operations to areas with excess power production capability,

such as Iceland [15].

15

Managed through self-service on demand – after limits for resource availability are

configured within the cloud provider’s systems, available resource capacity can be

automatically expanded or managed by the client with minimal effort. Bringing up a test

server no longer requires access to the physical system, loading software, and configuring

networking by hand; instead, the customer needs only to access their cloud provider and

request a new resource allocation using the self-service user interface. As long as the

organization’s contractual limits on resources allow the addition, it is managed automatically

without the need for further technical assistance. [15]

2.2.1 Types of cloud computing

Kirk Hausman et al. in [15] give a classification of cloud computing by location while a

classification by type of services offered is given in [16]. The two classifications are

discussed below.

2.2.1.1 Location of the cloud

Cloud computing is typically classified in the following three ways:

1. Public cloud: The computing infrastructure is hosted by the cloud vendor at the

vendor’s premises. The customer has no knowledge of or control over where the

computing infrastructure is hosted. The computing infrastructure is shared between

many organizations.

2. Private cloud: The computing infrastructure is dedicated to a particular organization

and not shared with other organizations. Some experts consider that private clouds are

not real examples of cloud computing. Private clouds are more expensive and more

secure when compared to public clouds.

3. Hybrid cloud: Organizations may host critical applications on private clouds and

applications with relatively fewer security concerns than on the public cloud. The

usage of both private and public clouds together is called a hybrid cloud. A related

term is cloud bursting. In cloud bursting, organizations use their own computing

16

infrastructure for normal usage, but access the cloud using services like Salesforce

cloud computing for high/peak load requirements. This ensures that a sudden increase

in computing requirement is handled seamlessly.

4. Community cloud: This involves sharing of computing infrastructure in between

organizations of the same community. For example, all government organizations

within the state of California may share computing infrastructure on the cloud to

manage data related to citizens residing in California.

2.2.1.2 Classification based upon service provided

Based upon the services offered, clouds are classified in the following ways:

1. Infrastructure as a service (IaaS) involves offering hardware-related services using

the principles of cloud computing. These could include some kind of storage services

(database or disk storage) or virtual servers. Leading vendors that provide IaaS

are Amazon EC2, Amazon S3, Rackspace Cloud Servers and Flexiscale.

2. Platform as a Service (PaaS) involves offering a development platform in the cloud.

Platforms provided by different vendors are usually not compatible. Typical players in

PaaS are Google’s Application Engine, Microsoft’s Azure, Salesforce.com’s

force.com.

3. Software as a Service (SaaS) includes a complete software offering in the cloud.

Users can access a software application hosted by the cloud vendor on pay-per-use

basis. This is a well-established sector. The pioneer in this field has been

Salesforce.com’s offering in the online customer relationship management (CRM)

space. Other examples are online email providers like Google’s Gmail and

Microsoft’s Hotmail, Google docs and Microsoft’s online version of office called

BPOS (Business Productivity Online Standard Suite).

http://www.flexiscale.com/
http://www.microsoft.com/windowsazure/
http://www.gmail.com/
http://www.hotmail.com/
http://docs.google.com/
http://www.microsoft.com/online/business-productivity.mspx

17

Figure 2.3: Cloud services

2.3 Android operating system

Android is a software stack for mobile devices that includes an operating system, middleware

and key applications with the aim of all-time high performance by optimizing memory with

faster and more accurate response. All applications are written using the Java language by

enabling and simplifying the reuse of components, i.e. full access to the same framework.

Application programming interfaces (APIs) are used by the core applications and can be

replaced or reused. They also include a set of C/C++ libraries used by components through

the Android application framework. The Core Libraries provide most of the functionality of

the Java language like Data Structures, Utilities, File Access, Network Access, Graphics, etc.

The Dalvik Virtual Machine provides an environment in which every Android application

runs in its own process, with its own instance with multiple efficient register-based VMs. The

Dalvik Executable (.dex) format, is optimized for minimal memory footprint and

compilation.

18

The Linux Kernel provides threading, low memory and process management, network stack,

drive model and security. Unlike PC operating systems, mobile phone operating systems are

constrained by their hardware, memory, power dissipation and mobility conditions [17].

The most recent Android version is Android 6.0, known as Android Marshmallow.

Google provides the Android SDK for developers for developing applications for Android

easily. The Android operating system provides users and developers with a complete suite of

software for mobile devices such as an operating system, middleware and key mobile

applications.

Figure 2.4: Layers of the Android OS

19

2.4 Review of existing works

There is much research on online-based compilers. This review discusses some previous

work on online compilers and how they execute. It also discusses the limitations of each.

2.4.1 Online C/C++ compiler using cloud computing

In 2011, Aamir, et al. [1] developed an Online C/C++ Compiler Using Cloud Computing.

The aim of their project was to have a system where online programming examinations with

C/C++ could be conducted in their school. This project implemented the following

functionalities

a. Compile option: This functionality allows the user to compile a program typed in the

editor area. Upon clicking this option, the user’s program is submitted to the cloud

server. The cloud server does the compilation and returns the appropriate result.

b. Execute option: When this option is clicked, the user is provided with the links to the

executable file of the program for him or her to download and subsequently execute.

The user has a folder where all programs previously compiled at least once and

without errors are stored.

c. Start test option: This option allows the user to start writing code. Unless this button

is clicked the user cannot start writing code.

All users’ programs together with the timestamps of when they were compiled are stored at

the server-side database. One notable feature of this work is that users are not allowed to

execute their code on the server. Instead a URL is provided for the user to download the

executable file. The feature of downloading the executable file onto the user’s terminal

ensures that malicious code (for example code to format the C: drive on the server itself)

written on the server will not execute on the server itself (thereby keeping the server intact

and safe).

20

2.4.1.1 Project architecture

The system uses a dual-layered architecture. The lower layer consists of clients, which are of

lower configuration. The upper layer consists of the server. The important components of the

upper layer are described as below:

1. A web framework, Visual Studio 2010, which handles the work of scripting and

compilation of code;

2. IIS server which handles the client request;

3. Database which stores the client information; and

4. The “cloud hard disk” as a shared resource.

21

Figure 2.5: Architecture of the project

2.4.1.2 Implementation

The user interface of this research was programmed in HTML and enhanced with ASPX. It

was assumed that the user would use his or her favourite text editor to create and correct

program files. This assumption allowed the creation of a very simple front end that loads

quickly and is platform independent. Although the front end is designed to be as simple as

possible with only a few commonly used options, it is sufficiently functional and can be used

quickly. The server-side part of the application was implemented using ASPX written in

ASP.NET that handles the communication between a user and compiler. The script does the

file managing, runs compilers and processes the compilation results. The result is the source

code listing or a list of errors sent back to the user.

22

2.4.1.3 Limitation of the system

The major setback of this system developed by the authors in [1] is that the system only

returns the executable (.exe) of any program successfully compiled which requires the user to

carry out some installation before being able to execute the executable returned.

Secondly this implementation was designed only for the C programming language and does

not provide a mobile application, leaving the user with the single option of accessing the

system only via a web browser.

2.4.2 Cloud Compiler Based on Android

In 2014, Vijay et al. [2] developed a Cloud Compiler Based on Android. Unlike Aamir et al.,

Vijay et al. developed an Android-based IDE that could detect the programming language of

the code typed.

Vijay et al. identified two simple but substantial problems with today’s IDEs. Firstly they

require intensive CPU and memory usage which is not available all the time and since these

applications are installed on a specific system, it prevents portability. By combining cloud

computing and Android technologies, their project aimed to remove the requirement for

powerful systems and provide portability to the developer considering that the Android

application provides much better functionality than other heavy programming kits for the

Android. The compiler they built was embedded in the cloud and used SaaS. The compiler

responds by providing the output of the program if successfully compiled or returns errors

and warnings.

23

2.4.2.1 Architecture of the project

The system was designed to work for three fields, which they named zones. So the system

was divided into three zones:

Application zone: The application zone consists of the interface from which a client can

interact with the proposed system. The modules included in this zone are the Android

application and the browser. The Android application is only for versions 2.3 (Gingerbread)

and above. Any person who does not have Android can also use the proposed system through

a web browser. These interfaces will provide the user with editors and various options

through which user can access functions needed such as compile and file upload. The

application zones must be provided with an internet connection. Without internet connection,

the compilers cannot be used. Users write and store their codes using the editor provided.

Whenever the device gets an internet connection, the files will be uploaded automatically if

the user chooses.

Communication zone: When code is being sent for compilation, the flow moves into the

communication zone. The communication zone is the core part of the model. First, the code's

language is detected so that the code should be sent to appropriate compiler. The

communication zone also includes scheduling the compilation queue and checking whether

the compiler is idle or not; if it is not then the code goes to a wait state. After the compiler is

detected in the idle state, the code is sent directly for execution. For getting access to the

workspace, the user has to register for the first time and then log in. This transferring of user

name and passwords in an encrypted format is included under the communication zone.

Database zone: The database zone consists of total backend contents such as workspace,

user name and passwords. These passwords are saved in encrypted format in the database.

24

The users are provided with a limited workspace for storing their codes or projects.

Whenever any particular user logs in, he or she will be provided with their workspace only.

These files are accessible either from the Android application or from the web browser.

Figure 2.6: Architecture of the system

25

2.4.2.2 Dataflow diagram of the system

Figure 2.7: Dataflow diagram of the system

2.4.2.3 Implementation of the project

The mobile application was developed using Android programming. The web version of the

application was developed with HTML and PHP.

2.4.2.4 Limitations of the system

The limitations of this system are that it does not accept runtime inputs for programs that

require such interaction, and this system does not have a provision for running GUI-based

programs in any way.

26

2.4.3 Cloud-based “C - Programming” Android application framework

In 2015, Sonali et al. [3] developed a Cloud based “C - Programming” Android Application

Framework. In their work, they built an Android-based IDE for running C programs on users’

smart devices.

2.4.3.1 Functionality of the system

For a user to use this system, he or she has to create an account. Upon doing this, the user is

assigned a user ID by the system which is stored in the database. With the user ID, a user can

log into the system and use the services provided. The Android application is made up of the

editor, submit and save, error box and result box (output field). The C code will be edited in

the editor of mobile application after which the code must be submitted to the server for

further processing. The server hosted in the cloud has the GCC compiler installed on it.

Submitted code is compiled and the result is returned to the user’s mobile device. The output

is displayed in the output panel for successfully compiled programs, otherwise appropriate

error messages are displayed in the error panel on the user’s device. The system can also be

assessed from the browser.

27

2.4.3.2 System architecture

Figure 2.8: System Architecture

DNS3 C PRO Cloud: This module consists of a Java-based tool for configuring the GCC

compiler. The tool can compile and execute the C programs and the results will be shown to

the user. It is a browser-based app that can be accessible from any browser on the network

and also on any smartphone device having groups or Wi-Fi support.

Android application: The user interface on an Android phone in which user can type the C

program is developed here. Also compile and execute functionality will be separately

provided on the phone, and the result will be displayed in the result box. The phone will be

connected to the cloud server via a Wi-Fi network.

Server Application: This service acts as an intermediate layer between a C pro application

and an Android phone. Users’ requests for compilation and execution of C programs are

forwarded to these services and the results returned to the phone.

28

2.4.3.3 Dataflow diagrams of the system

Figure 2.9: Dataflow diagram of the system

2.4.3.4 Implementation

The system was implemented with for the Android mobile operating system using the

Android SDK 20 with minimum Android OS API2.2. The database system used was

MySQL.

In general it is worthwhile to note that aside from providing a programmer the opportunity to

code on the go with a smart device, there are quite a number of other advantages that cloud-

based compilers have to offer. Some of these advantages are:

1. User's device memory to install a compiler is saved.

2. There is no need to upgrade the compiler, as every part of maintenance is handled by

the cloud provider.

3. The user will not have to install compiler on different devices, just connect to the

service and use it.

29

2.4.3.5 Limitations of the system

This system has no support for any other language than the C programming language.

2.5 Proposed solution to limitations of the existing works

To address the limitation posed by Aamir et al. in [1], the proposed system is built for the

Java programming language and allows users to execute programs on their smart devices.

Also a mobile application is to be developed for the system with a web version of the system

that can be accessed via the browser for users who do not use the Android platform

The system developed by Vijay et al. [2] could accept runtime inputs for programs. The

proposed system is to be developed to allow users to send inputs required by their programs

for compilation and execution. Also the proposed system will attempt to allow users to

compile simple GUI-based programs and display the output as an image embedded in HTML

in a browser.

The work of Sonali et al. [3], has the limitation of only compiling and executing C programs.

The new system will implement a Java-based compiler.

30

CHAPTER THREE: RESEARCH METHODOLOGY, SYSTEM

DESCRIPTION AND ARCHITECTURE

3.0 Introduction

In developing the system, the Sphere Engine Online Compiler API was used. In view of this,

this chapter discusses how the Sphere Engine works and the technologies it uses. The chapter

also gives a detailed description and architecture of the proposed system. The proposed

system has a database component for user registration, authentication, code compilation and

execution. The chapter also gives a detailed description of the database design. It discusses

the database system used, the database schema and the relational model.

The server-side technology used for communication with the Sphere Engine API is PHP and

the database system used is MySQL. PHP’s strong integration with MySQL makes it

desirable for this project and to programmers generally.

In the course of developing the system from the beginning right up to the point of

development and deployment, the following steps were taken.

Requirement assessment

The requirements of the new system were clearly defined by carrying out a thorough

investigation and assessment of the existing system. The strengths and weaknesses of the

existing systems were identified and the new sets of requirements to address these

weaknesses were formed.

Work flow design

A system workflow was designed based on the system requirements definition to serve as a

guide to developing the new system.

31

Coding

The workflow of the new system was converted into code and debugged.

Testing and deployment

The developed application was tested and deployed ready for use.

3.1 Sphere Engine

Sphere Engine [20] is an online compiler that offers a clean and efficient way to compile and

run source code of a programming language within an application. Sphere Engine executes

code on remote servers with the aid of a simple easy-to-use API. It has support for over 60

programming languages and libraries.

3.1.1 Sphere Engine API

This section describes the Sphere Engine Compiler’s webservice [20], including the use of

methods and how to interpret returned data.

3.1.1.1 Functionality

Sphere Engine Compiler’s API allows the user to:

1. Upload a source code;

2. Run the program with input data on server side in more than 60 programming

languages; and

3. Finally download results of the execution (output, standard error, compilation

information, execution time, memory usage, etc.).

32

3.1.1.2 The webservice

To use the Sphere Engine API, a user is required to register. The Sphere Engine developers

offer users a premium service, but upon registration, a user is given a certain number (1000 as

at the time of writing this report) of free submissions for a start.

The Sphere Engine Compiler API is a mostly RESTful API. REST stands for

Representational State Transfer. It relies on a stateless, client-server, cacheable

communication protocol – and in virtually all cases, the HTTP protocol is used. REST is an

architectural style for designing networked applications. The idea is that rather than using

COBRA, RPC or SOAP to connect between machines, simple HTTP is used to make calls

between machines.

RESTful applications use HTTP requests to post data (create and/or update), read data (e.g.

make queries), and delete data. Thus, REST uses HTTP for all CRUD (Create, Read, Update

and Delete) operations [19].

All Sphere Engine API access is over HTTPS and accessed via the

http://api.compilers.sphere-engine.com/api/v3/domain.

3.1.1.3 Passing request data to the Sphere Engine API

Request data is passed to the Sphere Engine API by sending the parameters via the POST

method in a way similar to how a regular HTML form is submitted. Each function takes at

least one parameter (access_token). An access_token is a unique identifier attached to each

user to be used when compiling codes. Each user has at least one access_token attached to his

or her account but has the privilege to create more access_tokens associated with the account.

33

3.1.2 Sphere Engine API methods

The Sphere Engine API has four known methods as at the time of writing this report. Each

method, as earlier stated, takes at least on parameter (i.e. access_token). If a wrong

access_token is provided, an AUTH_ERROR (authentication error) error code is returned.

3.1.2.1 Test connection method

The method name is test. It is a GET method used for testing purposes. With a valid

access_token, it returns the same data every time it is called. Using a sample access_token

with value d033e22ae348aeb5660fc2140aec3585, the following example request is

considered.

<?php

$url = "'http://api.compilers.sphere-engine.com/api/v3/test?access_token=

d033e22ae348aeb5660fc2140aec3585"

 $ch = curl_init();

 curl_setopt($ch,CURLOPT_URL, $url);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 $result = curl_exec($ch);

 echo $result;

curl_close($ch);

?>

Example response is:

{

 "moreHelp": "sphere-engine.com",

 "pi": 3.14,

 "answerToLifeAndEverything": 42,

 "oOok": true

}

3.1.2.2 List all supported languages method

This method name is languages. It is a GET method. When supplied a valid access_token, the

method returns an associative array of a list of programming languages supported by Sphere

Engine. The return value is an associative consisting of:

34

Table 3.1: Return value for supported languages

Key

integer

language id

Value

String

language name and version

Example request:

<?php

$url = "http://api.compilers.sphere-

engine.com/api/v3/languages?access_token=d033e22ae348aeb5660fc2140aec3585"

 $ch = curl_init();

 curl_setopt($ch,CURLOPT_URL, $url);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 $result = curl_exec($ch);

 echo $result;

curl_close($ch);?>

Example response:

{

 "7":"Ada (gnat-4.9.2)",

 "45":"Assembler (gcc-4.9.2)",

 "13":"Assembler (nasm-2.11.05)",

 "104":"AWK (gawk) (gawk-4.1.1)",

 "105":"AWK (mawk) (mawk-3.3)",

 "28":"Bash (bash 4.3.30)",

 "110":"bc (bc-1.06.95)",

 "11":"C (gcc-4.9.2)",

 "27":"C# (mono-3.10)",

 "41":"C++ 4.3.2 (gcc-4.3.2)"

}

3.1.2.3 Create submissions method

The method name is submissions. It is a POST method. This method is used to submit source

code in a programming language to the Sphere Engine API. In addition to the access_token,

this method takes the following post parameters.

35

Table 3.2: Parameters for the Submission Method

sourceCode

string

Source code of the submission

Language

Integer

Language identifier. Can be retrieved with the languages method

described above

Input

String

stdin data (if any) that the program requires

A call to this method with the correct parameters returns an id (identifier) of the new

submission or an error in the case where an invalid access_token is supplied. The returned id

of the new submission can be used to fetch the details of the execution of the submitted

source code.

Return value:

Table 3.3: Return value for the submission method

Id

string

id (identifier) of the new submission

Errors:

Table 3.4: Error returned by the submission method

400 The provided API token is not a valid Sphere Engine Compilers API token

Example Request:

<?php

36

$url = "http://api.compilers.sphere-

engine.com/api/v3/submissions/44379157?access_token=d033e22ae348aeb5660fc21

40aec3585&withCmpinfo=true&withOutput=true";

 $fields = json_encode(array(

 'language' => 10,

 'sourceCode' => "class Hello{public static void main(String[]

args){System.out.println(\"Hello World\");}}"

));

 $headers= array('Content-Type: application/json');

 $ch = curl_init();

 curl_setopt($ch,CURLOPT_URL, $url);

 curl_setopt($ch,CURLOPT_POSTFIELDS, $fields);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

 $result = curl_exec($ch);

echo $result;

curl_close($ch);?>

Example Response:

{

 "id": 123456

}

3.1.2.4 Fetch submission status method

The method name is submissions, the same as the one used to submit codes. The difference

between the two is that fetching the information about a submission requires an additional

mandatory id (identifier) parameter whose information is to be fetched. The parameters it

accepts are:

Table 3.5: Parameters accepted by the fetch submission method

Id

Integer

withSource

Boolean

Determines whether source code of the submission should be returned.

withInput

Boolean

Determines whether input data of the submission should be returned.

withOutput Determines whether output produced by the program should be returned.

37

Boolean

withStderr

Boolean

Determines whether stderr should be returned.

withCmpinfo

Boolean

Determines whether compilation information should be returned.

The fetch submission method if supplied valid parameters returns the following data:

Table 3.6: Return values for the fetch submission method

langId

integer

Submission's language identifier.

langName

string

Submission's language name.

langVersion

string

Submission's language version.

Time

Float

Execution time in seconds.

Date

String

Server date and time of submission's creation in the following format:

YYYYMMDD HHMMSS; for example: 20090519 023456.

Status

Integer

Submission's current status. (Discussed below under Status and Result).

Result

Integer

Submission's current result. (Discussed below under Status and Result).

Memory

Integer

Memory used by the program.

Signal

Integer

Signal raised by the program when an error had occurred.

Source

String

Source code of the submission. This value is returned if the withSource

parameter is set to true.

Input

String

Input data of the submission. This value is returned if the withInput

parameter is set to true.

Output

String

Output produced by the program. This value is returned if the

withOutput parameter is set to true.

Stderr Stderr produced by the program. This value is returned if the withStderr

38

String parameter is set to true.

Cmpinfo

String

Compilation information regarding the program. This value is returned if

the withCmpinfo parameter is set to true.

Example request:

$url = "http://api.compilers.sphere-

engine.com/api/v3/submissions/123456?access_token=d033e22ae348aeb5660fc2140a
ec3585"

 $ch = curl_init();

 curl_setopt($ch,CURLOPT_URL, $url);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 $result = curl_exec($ch);

 echo $result;

curl_close($ch);?>

Example response:

{

 "langId": 10,

 "langName": java,

 "langVersion": jdk 8u51,

 "time": 5,

 "date": 2016-03-17 10:49:07,

 "status": 0,

 "result": 13,

 "memory": 189056,

 "signal": 24,

 "output": "hello world",

 "cmpinfo": ""

}

3.1.3 Status and result

Variables status and result are integer values returned when the details of a submission are

fetched. The tables below summarizes the meaning of the integer values returned by status

and results variable as well as the meaning of returned error codes.

39

Table 3.7: Status variable values

Value Meaning

< 0 waiting for compilation – the submission awaits execution in the queue

0 done – the program has finished

1 compilation – the program is being compiled

3 running – the program is being executed

The Sphere Engine API requires that when the getSubmissionStatus method is used and the

status is not equal to 0, then one should wait for 35 seconds and call the method again. When

the status is 0, how the program finished can be found out by checking the result variable.

Table 3.8: Result variable values

Value Meaning

11 compilation error – the program could not be executed due to compilation error

12 runtime error – the program finished because of the runtime error, for example:

division by zero, array index out of bounds, uncaught exception

13 time limit exceeded – the program did not stop before the time limit

15 success – everything went ok

17 memory limit exceeded – the program tried to use more memory than it is allowed to

19 illegal system call – the program tried to call illegal system function

20 internal error – some problem occurred on Sphere Engine; try to submit the program

again and if that fails too, then contact the Sphere Engine developers

Table 3.9: Error codes meaning

Value Meaning

200 Everything went ok.

401 User name or user's password are invalid.

404 Submission with a specified link could not be found.

400 Language with a specified id does not exist.

401 Access to the resource is denied for the specified user.

40

3.2 Description of the system

In the section the system’s functionalities, architecture, functional system requirements,

dataflow diagram, detailed database design and the overall behaviour of the system are

discussed.

3.2.1 Functionalities of the system

To use the system developed, a user must be connected to the internet with his or her device

through a Wi-Fi network or any other network. The user is then required to first register.

During the course of registration, in addition to providing some personal details including

email address and a password, the user is required to choose a unique name as his or her root

folder. This name is used to create a folder for the user on the system server where all folders

and code are stored and can be managed. The root folder name is unique to all users. The

system ensures this during the course of registration. With a combination of email address

and password, the user can log into the system where he or she directly accesses the

compile/editor area and can perform the following functions.

1. Create folders and files: The system provides a user with a tree-like directory for

managing folders and files. The user can create as many folders and files as desired.

The system automatically renames a file folder if a file or folder with the same name

already exists in the same directory. The created files and folders are stored on the

server for future use by the user.

2. Modify folders and files: A user can modify files and folders. The system allows a

user to rename a folder and file while maintaining the uniqueness of the names of the

files and folders in any directory. A user can also delete any folder or file as desired.

3. Load files into editor: This feature allows the user to open files in the editor to

enable him or her to edit the content and also to run or compile.

4. Edit and save file content: A user can open one or more files in the editor, edit the

contents of files and save any changes made.

41

5. Compile: This option allows the user to compile a program (file) currently open in

the editor. The resulting compilation information is returned to the user.

6. Run/execute: This is a function which when used returns the output of a program (if

any) currently open in the editor. If the program contains error(s), they are displayed

to the user.

3.2.2 Architecture of the system

The system uses server/client architecture. The client requests services from the server which

forwards the request to the cloud Sphere Engine API. The response is returned to the server

which interprets it and sends the appropriate result back to the client. The figure below

describes the architecture of the system.

42

Figure 3.1: Architecture of the system

The diagram above shows a brief overview of how the system works and what it does. The

client is a user with a mobile device running on the Android operating system (minimum

version 4.0, or Ice Cream Sandwich) or a non-Android mobile device or a PC with a browser

installed. The user is required to register to use the system. With details from a successful

43

registration, a user can log into the system and beginning writing and compiling code. User-

written code is saved in the database on the server and can be retrieved at any time. User

requests for compilation or execution are forwarded to the cloud server (Sphere Engine, [20])

and the response returned to the server is sent back with appropriate results and displayed on

the user’s device. The details of execution and compilation are also stored in the server’s

database for future referencing.

44

3.2.3 Dataflow diagram

Figure 3.2: Dataflow diagram of the system

The figure above is the dataflow diagram for the compiler we are building. A number of

entities and processes are involved. From the point of registration and login until the point of

45

creating and managing code as well as compiling and executing it, the interaction and flow of

data among these entities and process are clearly shown.

3.2.4 Functional requirements

3.2.4.1 Development of the Android and web application

The system requires an Android device or a web browser on a PC and non-Android devices, a

web server to host the server-side program that interfaces between the user device and the

cloud server and finally a cloud server which does the main processing. The user writes and

edits the Java programs on his or her device and sends them to the server. The server

forwards the request to the cloud server which does the processing and returns the response to

the web server which interprets the result and sends it for display to the user’s device.

3.2.4.2 Development of the server

The server is created for interfacing between the user and the cloud server. The server

requests the cloud server to execute user’s code and interprets the returned response and

sends the result to the user. The server also handles storage of user’s code, compilation and

execution information.

3.2.5 Other requirements

3.2.5.1 User interface requirements

Two user interfaces were developed, one for the Android devices developed using the

Android SDK with minimum API level 16 and the other was developed for the web users

accessing the system via a browser with HTML, CSS and JQuery.

46

3.2.5.2 Communication requirement

A user is required to have access to the internet via Wi-Fi networks, LAN networks or any

other network to use the system.

3.2.6 Database design

A database was designed for the system to store user’s information, as well as compilation

and execution information. Each user that registers on the system has a unique root folder

where folders and files (programs) are stored on the server. Users have access only to their

folders and files on the server, which are displayed using a directory-like structure.

3.2.6.1 Entities created

The following entities with the information they hold were created.

USERS_tbl: This entity stores the personal information of any registered user.

ROOT_FOLDER_tbl: The unique root folder chosen by a user during registration is stored

here.

CODES_tbl: Details of files (programs) created by a user such as file name, folder level it

belongs to and the date and time of creation are stored by this entity.

ROOT_FOLDER_CODES_tbl: Files (programs) belonging to a particular root folder are

stored here.

CODE_SUBMISSION_tbl: Whenever a user compiles a program, the submission ID

returned by the cloud server is stored here.

47

SUBMITTED_CODES_tbl: This entity stores the details of program execution and

compilation.

3.2.6.2 Entity relationship model

The entity relationship diagram for the system was modelled using the modelling tool

MySQL Workbench. The figure below shows the resulting model.

Figure 3.3: Entity relationship diagram of the system

48

3.2.6.3 Relational model with referential integrity constraints

USERS_tbl

ROOT_FOLDERS_tbl

CODES_tbl

code_id code_name folder_name folder_level date_created

ROOT_FOLDER_CODES_tbl

root_folder_codes_id root_folder_id code_id

CODE_SUBMISSION_tbl

code_submission_id submission_id

SUBMITTED_CODES_tbl

submitted_codes_id code_id code_submission_id date_submitted

user_id firstname Lastname email_address mobile_number Password registration_date registration_time

root_folder_id root_folder_name user_id

49

CHAPTER FOUR: IMPLEMENTATION OF THE SYSTEM

4.0 Introduction

In this chapter, the various components of the implemented system are discussed. A

directory-like structure was used to display the user folders and files in the root directory. The

system also comprises an in-built editor with functionalities such as save, load, find, replace,

go-to-line and some others for editing program code. The system also has a compile and

execute region (where the compile and run button are situated), the input region (for

programs that require stdin input), the compilation information region (to display the

compilation information of any program) and the stdout region (to display the output of any

program). This section discusses the various components used in developing the system and

how they are laid out to produce the compiler interface of the system.

4.1 jsTree

The jsTree [24] is a free, open-source plugin written in jQuery distributed under the MIT

license. It is easily extensible, customizable, configurable and easy to theme with support for

HTML and JSON data sources as well as AJAX loading.

The jsTree functions properly in either of the two box-models, content-box or border-box. It

can be loaded as an AMD module and has a built-in mobile theme for responsive design that

can easily be customized. It uses jQuery's event system, so binding callbacks on various

events in the tree is familiar and easy. Some of the notable features of jsTree include:

1. Drag and drop support;

2. Keyboard navigation;

3. Inline edit, create and delete;

4. Tri-state checkboxes;

5. Fuzzy searching; and

50

6. Customizable node types.

Figure 4.1: jsTree directory

According to the developers, jsTree is compatible with Chrome 14+, Firefox 3.5+, Opera

12+, Safari 4+ and IE8+. It could work with older versions but it has not been tested.

4.2 EditArea Javascript editor

EditArea [25] is a free Javascript editor for source code. (That is not a WYSIWYG editor).

This editor is designed to edit source code files in a text area. The main goal is to allow text

formatting, search and replace and real-time syntax highlight (for not too heavy text). This

editor is free and freely distributable (released under LGPL, Apache and BSD licenses).

51

Figure 4.2: EditArea Javascript editor

The main features of the EditArea include:

1. Easy to integrate, only one script include and one function call;

2. Tabulation support (allow to write well-formatted source code);

3. Customizable real-time syntax highlighting (currently: PHP, CSS, Javascript, Python,

HTML, XML, VB, C, CPP, SQL, Pascal, Basic, etc.);

4. Word-wrap support;

5. Search and replace (with regexp);

6. Auto-indenting new lines;

7. Line numeration;

8. Multilanguage support (currently: Croatian, Czech, Danish, Dutch, English,

Esperanto, French, German, Italian, Japanese, Macedonian, Polish, Portuguese,

Russian, Slovak, Spanish, and probably more ...);

9. Possible PHP gzip compression;

10. Allow multiple instances;

11. Full screen mode;

12. Possible plugin integration;

13. Possible save and load callback functions;

14. Possible dynamic content management; and

15. Can work in the same environment as “prototype” and “mootools” libraries.

The EditArea has some limitations. Notable among these limitations are:

52

1. Automatic focus is on the textarea on page load.

2. It can be slow when editing large files (Javascript is not a fast language).

3. Only one syntax language is supported at the same time (no HTML and PHP syntax

highlight at the same time).

4.3 The interfaces

Two interfaces, the web browser interface and the Android application interface were

developed for the system. Both interfaces consist of a number of components. Some of these

components are made up of other subcomponents. Among the components of the system, the

most important are:

LOGIN AREA: A user wishing to use the system logs into it using login credentials via this

area.

REGISTRATION AREA: A user is required to first register before accessing services

rendered by this system. This registration process can be done via this component.

COMPILE AREA: This is the area where a user creates, edits, compiles and executes code.

4.3.1 Web browser interface

The web browser interface was designed using HTML, CSS and JQuery. The jsTree and

EditArea plugin were integrated with other HTML elements to produce the interface for the

system. A responsive HTML theme was used to make the system easy to use regardless of

the device (non-Android devices) used to access the system.

53

Figure 4.3: Components of the Compile area

Figure 4.4: Execution region of the Compile Area

4.3.2 Android interface

The Android interface was developed using Android SDK tools provided by Google (the

developers of Android). A minimum SDK version of 16 (for Android operating system 4.1 –

Jelly Bean) was set. As at the time of implementation, the latest version of the Android

54

operating system available was 5.0 (Lollipop) with SDK version 23, hence the target SDK

version was set to 23.

Rather than creating an entirely different interface from scratch for the Android interface, the

WebView widget provided by Android was leveraged to bypass the challenges of creating the

editor area and the ensure uniformity with the web version of the system.

The WebView class is a view that displays web pages or simply displays some online content

within an application. It uses the WebKit rendering engine to display web pages [27]. The

URL to the web version of the system was passed to the WebView class to be displayed on

the user’s device. Javascript was used to detect mobile devices which in order to provide a

separate implementation for some features (like right-click) that are not supported by mobile

devices. The figures below show the Android interface developed by the system.

Figure 4.5: Components of the Android application interface

55

The use of the regions highlighted in the figure above is described below.

Drawer: The drawer region allows users to open or close the region containing the folders

and files. This feature is very useful to users with small screen devices as it allows them have

more space for the editor to occupy.

User/folders/files settings: This region contains a set of menu items for managing personal

user details, file creation and modification, help and a link to logout.

jsTree region: Users’ folders and files created and managed by the jsTree plugin are situated

here.

Figure 4.6: Editor Area of the Android Interface

56

Figure 4.7: Run/Compile region of the Android interface

Figures 4.6 and 4.7 show the following regions:

Edit area: This is the region containing the EditArea editor with which users edit and save

their programs.

Compile and Run region: This area has two buttons: compile for compiling a program and

run for executing it.

57

Figure 4.8: Execution region of the Android interface

In the figure above, we have:

Stdin region: This is a text area for users to supply inputs for programs that require such

inputs.

Compilation info region: Compilation information for a program, i.e. successfully compiled,

error during compilation, and details of errors are displayed here.

Stdout region: The output of successfully compiled programs is displayed here.

4.4 Software tools used

In developing this system from the requirement analysis stage up to the development phase,

the following software tools were used.

58

WampServer

WampServer (Windows, Apache, MySQL, PHP) is an all-in-one package that provides a

Windows web development environment. It allows one to create web applications. It also

comes with phpMyAdmin to easily manage your database. This software was used in

developing the web aspect of the system.

Android Studio

Android studio is the official IDE for Android app development, based on intelliJ IDEA.

According to [29], on top of intelliJ’s powerful code editor and developer tools, Android

Studio offers even more features that enhance productivity when building Android apps such

as a flexible Gradle-based build system, a rich layout editor with support for drag and drop

theme editing, etc. This tool was used in developing the Android application of the system.

Notepad++ Text Editor

Notepad++ is a text editor and a source code editor for Windows. Apart from its simplicity,

Notepad++ has support for many languages, syntax highlighting and tabbed editing, which

allows working with multiple open files. Notepad++ was used in writing the code for the web

system.

MySQL Workbench

MySQL Workbench is a unified visual tool that provides data modelling, SQL development

and comprehensive administration tools for server configuration, user administration, backup,

and much more [28]. This tool was used in modelling all database aspects of the system.

Adobe Fireworks

Adobe Fireworks is a discontinued bitmap and vector graphics editor for websites and apps

that provides designers with a lightweight, effective means of creating graphics without

59

getting deep into code. This tool was used to create the majority of the images required for

the system. It was also used to create diagrams for this report.

Browsers

A web browser is a software application for retrieving, presenting and traversing information

resources on the web. The most commonly used browsers are Microsoft Edge, Mozilla

Firefox, Chrome, Opera and Safari. The web version of the system was successfully tested on

Microsoft Edge 25+, Mozilla Firefox 4.0+ Chrome 50+, Opera 12+ without any bugs

detected. The system is expected to work perfectly with lower versions of these browsers but

it has not been tested.

Other tools used include:

Android Device

An Android device with the Android operating system 5.0 (Android Lollipop) was used to

test the developed Android application.

4.5 System testing

Testing is a process of performing a number of tests on a system to discover problems before

it is delivered to its users. The testing of a system is usually necessary before and after the

system is delivered to its potential users.

The server side that mediates between the client (user device or web browser) and the cloud-

based Java server (Sphere Engine, [20]) was developed on a 500 GB hard disk, 4 GB RAM

PC with a Windows 10 operating system. The server side was deployed to an Ubuntu server.

60

The web-based system was accessed and tested in the Windows 10 environment using

Chrome 14+, Firefox 3.5+, Opera 12+, Safari 4+ and IE8+, with no bugs detected. The

system is expected to work on other operating systems with the same browsers.

The Android application was tested an Android mobile device with a 5.10-inch screen display

and a 1080 pixel resolution, 2 GB of RAM and 16 GB of internal memory with Android

version 5.0 (Lollipop) with no known bugs. The web system was also accessed on the mobile

device via Chrome 50+ and Firefox 46+ browsers for Android. The Android application was

designed for devices of all screen sizes and resolution with minimum OS version 4.0 (Jelly

Bean). The application is expected to work on these devices.

61

CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

This chapter discusses the summary of results obtained, conclusions and recommendations

(future works) of the “Cloud-based Java Compiler for Smart Devices”

5.0 Summary of results obtained

The proposed system had a number of aims and objectives as discussed in Chapter One of

this thesis. Among the set out objectives and from the analysis of the implementation of the

system from the previous chapter, the following is a summary of results obtained:

Design of an Android-based IDE: An Android-based IDE was successfully developed

which allows users to create and edit Java programs on their smart devices.

Design of a web-based IDE: A web-based equivalent of the Android-based IDE was also

developed to enable users who do not use the Android operating system platform access the

system from the mobile devices or PCs via a web browser.

Other functionalities of the system successfully implemented include:

Create, modify and save files: The system allows users to not only create files (Java

programs), but they can also save them to the server so that when next they log into the

system, they can access their files and continue from where they stopped.

Compile: Users can successfully compile written programs and have the compilation

information displayed on their device or PC.

Run: Users can successfully execute their written programs. The result of programs that do

not contain any error(s) is displayed to the user or appropriate error messages are displayed.

62

5.1 Conclusions

In conclusion, the system developed affords a user the opportunity to write and execute Java

programs on a device where there is internet connectivity. This makes it possible for a

programmer to easily move around with a programming kit on the go. The developed “cloud-

based Java compiler for smart devices” can now be integrated into a smart multimedia

learning system for Java programming language to allow users who are learners to program

on the go with their smart devices.

5.2 Limitations of the system

We were faced with certain challenges during this research, the most obvious of them all

being the short period of time allocated. As a result our system has some features we could

not build as we would have wished or did not include them at all. Below are the limitations of

our system.

Limited amount of compile time: We were unable to build our own cloud-based server for

compilation. We had to use an existing server (Sphere Engine, [20]) which offered us only a

limited number of compilation times.

No Execution for GUI programs: We were unable to solve the problem posed by the work

of Vijay et al. [2]. The approach we initially wanted to use did not work. We discovered a

new approach at the end of the work but could not implement it due to time constraints.

Hopefully we can include it in a future work.

5.3 Recommendations and future work

The time frame for this research was too short to achieve some of the desired features of the

system. Initially we were supposed to implement the cloud-based server that hosts the Java

63

compiler but this could not be done; hence we used an existing online compiler (Sphere

Engine, [20]). In view of this, the following are suggested for consideration in future works.

1. Implement a cloud-based server to host the Java compiler: A cloud-based server

should be developed in the future. As it is we used an existing Java compiler which

restricted us to their functionalities.

2. Handle GUI programs: During the planning stage, we intended to allow users to

execute GUI programs and return an image of the GUI program embedded into

Javascript. We started this process but could not complete it before the end of the

research. This should be considered for implementation in the future or better still

other methods to allow users to execute GUI programs from their smart devices could

be explored.

3. Implement a smart multimedia learning system for Java programming

language: The “Cloud-based Java Compiler for Smart Devices” developed is one

component of a proposed smart multimedia learning system for Java programming

language. The other components of this smart learning system could be developed and

integrated with the already developed Cloud-based Java Compiler for Smart Devices.

4. Extend to include other programming languages: The implemented system was

strictly for the Java programming language. In future works compilers for other

programming languages such as C, C++, Python, etc. could be developed and

integrated into this system.

64

References

[1] Aamir, N.A., Siddharth, P., Arundhati, N., Aditya, P., Venkatesh, B. 2011. “Online

C/C++ Compiler Using Cloud Computing”, IEEE Spectrum. DOI 978-1-61284-774-

0/11/$26.00

[2] Vijay, R.S., Guruprasad, S.I., Dilip, K.J. (2014). “Cloud Compiler Based on Android”.

International Journal of Science and Research (IJSR), 3(9), 2342-2346.

[3] Sonali, S.P., Vinod, B.I. (2015). “Cloud based C - Programming Android Application

Framework”. International Journal of Computer Applications (IJCA), 115(12), 20-23.

[4] Utkrash, L. (2013, April 14). Technology and its Role in 21
st
 Century Education.

Retrieved April 1, 2016, from http://edtechreview.in/trends-insights/insights/277-role-of-

technology-in-21st-century

[5] Why do we need Technology Integration? (2007, November 7). Retrieved April 2, 2016,

from http://www.edutopia.org/technology-integration-guide-importance

[6] Mobile Learning. Retrieved April 3, 2016, from

http://library.educause.edu/topics/teaching-and-learning/mobile-learning

[7] Baiyun, C., Ryan, S., Luke, B., Sue, B. (2015, June 22). Students’ Mobile Learning

Practices in Higher Education: A Multi-Year Study. Retrieved April 3, 2016, from

http://er.educause.edu/articles/2015/6/students-mobile-learning-practices-in-higher-

education-a-multiyear-study

[8] Berking et al., Mobile Learning Survey Report, 2013, 5.

[9] Amit, N. (2015, July 28). Technology and the Future of Learning. Retrieved April 3, 2016

from https://www.td.org/Publications/Blogs/Global-HRD-Blog/2015/07/Technology-and-the-

Future-of-Learning

[10] Java (Programming Language). (2016, April 23). Retrieved April 3, 2016, from

https://simple.wikipedia.org/wiki/Java_(programming_language).

[11] Andrew, W. A., (1997). Modern Compiler Implementation in C – Basic Techniques.

Cambridge University Press, pp.3-6.

65

[12] Smartphone OS market Share, 2015 Q2. Retrieved April 3, 2016, from

http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[13] Niklaus, W., (2005). Compiler Construction. Addison-Wesley, pp.6-10.

[14] Phases of Compiler. Retrieved April 3, 2016, from

http://www.personal.kent.edu/~rmuhamma/Compilers/MyCompiler/phase.htm

[15] Kirk, H., Susan, L.C., Telmo, S. (2013). Cloud Essentials. John Wiley & Sons, Inc.,

Indianapolis, Indiana, pp.1-47.

[16] Types of Cloud Computing. Retrieved April 6, 2016, from

http://www.thecloudtutorial.com/cloudtypes.html.

[17] Nisarg, G., Rahila, S. (2010). Google Android: An Emerging Software Platform For

Mobile Devices, International Journal on Computer Science and Engineering (IJCSE),

Special issue, ISSN: 0975-3397. 12-17.

[18] Ideone is powered by: Sphere Engine. Retrieved April 24, 2016, from

http://www.ideone.com/sphere-engine.

[19] Elkstein, M. Learn REST: A Tutorial (2008, February 9). Retrieved April 26, 2016, from

http://rest.elkstein.org/2008/02/what-is-rest.html

[20] API Documentation. Retrieved February 22, 2016, from http://sphere-

engine.com/services/compilers/docs

[21] Ravishanker, K. (2014, January 1). PHP CURL POST & GET Examples – Submit form

using PHP CURL. Retrieved March 5, 2016, from http://hayageek.com/php-curl-post-get/

[22] Elmasri, R. (2002). Fundamentals of Database Systems. (3
rd

 Edition), University of

Texas Press, Texas. pp 165 - 180

[23] Ian, S. (2011). Software Engineering (8
th

 Edition), China Machine Press, China. pp.119 -

170

[24] What is jsTree? Retrieved May 6, 2016, from http://www.jstree.com.

[25] Edit Area. Retrieved May 9, 2016, from http://www.cdolivet.com/editarea/

66

[25] Edit Area Examples. Retrieved May 9, 2016, from

http://www.cdolivet.com/editarea/editarea/exemples/exemple_full.html

[25] WebView. Retrieved May 13, 2016, from

http://developer.android.com/reference/android/webkit/WebView.html

[26] MySQL Workbench. Retrieved May 14, 2016, from

http://www.mysql.com/products/workbench

[27] Android Studio Overview. Retrieved May 14, 2016, from

http://developer.android.com/tools/studio/index.html

[28] Trefis T. (photographer). (2015). Reasons Why Nokia May Be Planning to Re-enter The

Snartphone Business. [Digital image] retrieved May 26, 2016 from

http://www.forbes.com/sites/greatspeculations/2015/07/14/reasons-why-nokia-may-be-

planning-to-re-enter-the-smartphone-business/#747af80f4869.

[29] Mayer, R.E., Moreno, R. (2002). Aids to Computer-based Multimedia Learning. In

Learning and Instruction, volume 12, 107-119

67

Appendix A

Images of the Developed Android Application

1.0

2.0

 LOGIN PAGE REGISTRATION PAGE

68

COMPILE AREA WITH OPEN ERROR MESSAGE DISPLAYED

DRAWER SHOWING FOLDERS WHILE ATTEMPTING TO RUN OR

AND FILES COMPILE WITHOUT OPENING

 A FILE IN THE EDITOR

69

COMPILING OR RUNNING PROGRAM SUCCESSFULLY

A PROGRAM COMPILED OR EXECUTED

70

COMPILATION INFORMATION OUTPUT OF A PROGRAM BASED

OF PROGRAMS SUCCESSULLY ON USER INPUT SUPPLIED

COMPILED

71

A PROGRAM WITH COMPILATION COMPILATION DETAILS OF

ERROR PROGRAM WITH ERROR

72

MENU TO MANAGE FOLDERS, CREATING OR RENAMING AN

FILES AND PERSONAL EXISTING FILE

SETTINGS

73

CREATING OR RENAMING AN EDITOR SHOWING MULTIPLE

EXISTING FOLDER TABS OPEN AND TOOLBAR

74

Images of the WEB-UI of the System

LOGIN PAGE

REGISTRATION PAGE

75

COMPILE AREA SHOWING FOLDERS AND FILES AND ERRORS WHILE

ATTEMPTING TO COMPILE OR RUN WITHOUT OPENING A FILE IN EDITOR

EDITOR SHOWING MULTIPLE OPEN TABS AND TOOLBAR

76

COMPILING OR RUNNING A PROGRAM

PROGRAM SUCCESSFULLY COMPILED OR EXECUTED

77

COMPILATION INFORMATION OF PROGRAMS SUCCESSFULLY COMPILED

OUTPUT OF A PROGRAM BASED ON USER INPUT SUPPLIED

78

A PROGRAM WITH COMPILATION ERROR

79

COMPILATION DETAILS OF PROGRAM WITH ERROR

MENU FOR MANAGING FOLDERS AND FILES

CREATING OR RENAMING A FILE OR FOLDER

80

Appendix B

Some code Fragments of the developed Android Application and Web Version.

Here is a code fragment from the Android application main activity class called

MainCompilerActivity.java

package com.myapps.mtystyle.javacompiler;

import android.app.Dialog;

import android.app.ProgressDialog;

import android.os.Bundle;

import android.support.v7.app.AppCompatActivity;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.webkit.WebView;

import android.webkit.WebViewClient;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.EditText;

import android.widget.Spinner;

import android.widget.Toast;

import java.util.ArrayList;

import java.util.List;

public class MainCompilerActivity extends AppCompatActivity {

 private WebView webView;

 private FoldersAndFilesManager fManager;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main_compiler);

 fManager = new FoldersAndFilesManager(this);

 webView = (WebView) findViewById(R.id.webView);

 webView.setWebViewClient(new MyWebViewClient());

 webView.getSettings().setJavaScriptEnabled(true);

webView.loadUrl("http://www.onepersonatatime.org.ng/compiler/admin");

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 getMenuInflater().inflate(R.menu.menu_main_compiler, menu);

 return true;

 }

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()){

 case R.id.menu_create_folder:

81

 fManager.createFolderDialog();

 return true;

 case R.id.menu_rename_folder:

 fManager.renameFolderDialog();

 return true;

 case R.id.menu_delete_folder:

 fManager.deleteFolderDialog();

 return true;

 case R.id.menu_create_file:

 fManager.createFileDialog();

 return true;

 case R.id.menu_rename_file:

 fManager.renameFileDialog();

 return true;

 case R.id.menu_delete_file:

 fManager.deleteFileDialog();

 return true;

 default:

 return super.onOptionsItemSelected(item);

 }

 }

 private class MyWebViewClient extends WebViewClient {

 ProgressDialog progressDialog;

 @Override

 public boolean shouldOverrideUrlLoading(WebView view, String url) {

 if

(!url.contains("http://www.onepersonatatime.org.ng/compiler/admin")) {

 view.loadUrl(url);

 return true;

 }

 return super.shouldOverrideUrlLoading(view, url);

 }

 public void onLoadResource (WebView view, String url) {

 if (progressDialog == null) {

 progressDialog = new

ProgressDialog(MainCompilerActivity.this);

 progressDialog.setMessage("Loading...");

 progressDialog.show();

 }

 }

 public void onPageFinished(WebView view, String url) {

 try{

 //work on this later

 progressDialog.dismiss();

 if(progressDialog.isShowing()) {

 progressDialog.dismiss();

 progressDialog = null;

 }

 }catch(Exception exception){

 exception.printStackTrace();

 }

 }

 }

}

The file filehandler.php handles database file creation, deletion,

modification on the server side.

<?php

session_start();

82

require_once('includes/functions.php');

date_default_timezone_set('Africa/Lagos');

//echo $_POST['path'];

if($_POST){

 if(isset($_POST['rename']) && isset($_POST['path']) &&

isset($_POST['newName'])){

 //echo $_POST['path'];

 $folders = explode('/', $_POST['path']);

 $folder_level = count($folders) - 1;

 $oldName = $folders[count($folders)-1];

 $folder_name = $folders[count($folders)-2];

 $rf = $_SESSION['root_folder'];

 $qF = "SELECT root_folder_id FROM root_folders_tbl WHERE

root_folder_name = '".$rf."'";

 $rqF = mysql_query($qF, $link);

 if(mysql_num_rows($rqF) == 1){

 $row = mysql_fetch_array($rqF);

 $rfID = $row['root_folder_id'];

 $newName = filter($_POST['newName']);

 $query = "UPDATE codes_tbl SET code_name = '".$newName."' WHERE

codes_tbl.code_name = '".$oldName."' AND codes_tbl.folder_name =

'".$folder_name."' AND codes_tbl.folder_level = '".$folder_level."' AND

codes_tbl.root_folder_id = '".$rfID."'";

 $result = mysql_query($query, $link) or die(mysql_error());

 if(mysql_affected_rows($link)==1){

 echo 1;

 } else {

 echo $result + "";

 }

 } else{

 echo 3;

 }

 }

 if(isset($_POST['create']) && isset($_POST['path']) &&

isset($_POST['name'])){

 //echo $_POST['path'];

 $folders = explode('/',$_POST['path']);

 $rootFolder = $_SESSION['root_folder'];

 $folder_level = count($folders);

 $folder_name = $folders[count($folders)-1];

 $name = filter($_POST['name']);

 //$errors = array();

 $data = "";

 $qF = "SELECT root_folder_id FROM root_folders_tbl WHERE

root_folder_name = '".$rootFolder."'";

 $rqF = mysql_query($qF, $link);

 if(mysql_num_rows($rqF) == 1){

 $row = mysql_fetch_array($rqF);

 $rfID = $row['root_folder_id'];

 $date = date('d-m-y H:i:s');

 $iCQuery = "INSERT INTO codes_tbl VALUES('','$name', '$rfID',

'$folder_name', '$folder_level','$date')";

 $riCQuery = mysql_query($iCQuery, $link);

 if(mysql_affected_rows($link) == 1){

 $code_id = mysql_insert_id();

83

 $qry = "INSERT INTO root_folder_codes_tbl VALUES('',

'$rfID', '$code_id')";

 $rslt = mysql_query($qry, $link);

 if(mysql_affected_rows($link) == 1){

 $data = 1;

 } else {

 //$errors[] = "problem storing root folder code";

 $data = 2;

 }

 }else{

 //$errors[] = "problem storing code";

 $data = 3;

 }

 }else {

 //$errors[] = "root folder not found";

 $data = 4;

 }

 echo $data;

 }

 if(isset($_POST['delete']) && isset($_POST['filename'])){

 //echo $_POST['filename'];

 $folders = explode('/', $_POST['filename']);

 //$oldName = $folders[count($folders)-1];

 $folder_name = $folders[count($folders)-2];

 $folder_level = count($folders) - 1;

 $rf = $_SESSION['root_folder'];

 $outData = "";

 $qF = "SELECT root_folder_id FROM root_folders_tbl WHERE

root_folder_name = '".$rf."'";

 $rqF = mysql_query($qF, $link);

 if(mysql_num_rows($rqF) == 1){

 $row = mysql_fetch_array($rqF);

 $rfID = $row['root_folder_id'];

 $name = $folders[count($folders)-1];

 $query = "DELETE FROM codes_tbl WHERE codes_tbl.code_name =

'".$name."' AND codes_tbl.folder_name = '".$folder_name."' AND

codes_tbl.folder_level = '".$folder_level."' AND codes_tbl.root_folder_id =

'".$rfID."'";

 $result = mysql_query($query, $link) or die(mysql_error());

 if(mysql_affected_rows($link)==1){

 $outData = 1;

 } else {

 $outData = $result. mysql_affected_rows($link);

 }

 } else {

 $outData = 3;

 }

 echo $outData;

 }

}

?>

SphereEngine.php handles program submission to the Sphere Engine Online API

<?php

require_once('includes/functions.php');

if($_POST){

84

 if(isset($_POST['runCode']) && isset($_POST['sourceCode']) &&

$_POST['runCode'] == 1){

 $spEngine = new SphereEngine();

 $input = $_POST['stdInput'];

 echo $spEngine->submitCode($_POST['sourceCode'], $input);

 }else if(isset($_POST['fetchSubmission']) &&

isset($_POST['submissionID']) && $_POST['fetchSubmission'] == 1){

 $submissionID = filter($_POST['submissionID']);

 $spEngine = new SphereEngine();

 echo $spEngine->fetchSubmission($submissionID);

 }else{

 echo 9876;

 }

}

class SphereEngine{

 public function __construct() {

 }

 public function submitCode($source, $input){

 $url = 'http://api.compilers.sphere-

engine.com/api/v3/submissions?access_token=2bf91fed33b7fbc3255b7ef37579ed16

';

 $fields = json_encode(array(

 'language' => 10,

 'sourceCode' => $source,

 'input' => $input

));

 $headers= array('Content-Type: application/json');

 $ch = curl_init();

 curl_setopt($ch,CURLOPT_URL, $url);

 curl_setopt($ch,CURLOPT_POSTFIELDS, $fields);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

 $result = curl_exec($ch);

 curl_close($ch);

 return $result;

 }

 public function fetchSubmission($submissionID){

 $base = "http://api.compilers.sphere-

engine.com/api/v3/submissions/";

 $url =

$base.$submissionID."?access_token=2bf91fed33b7fbc3255b7ef37579ed16&withCmp

info=true&withOutput=true&withStderr=true";

 $ch = curl_init();

 curl_setopt($ch,CURLOPT_URL, $url);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

 $result = curl_exec($ch);

 curl_close($ch);

 return $result;

85

 }

}

?>

handleSubmission.php handles program compilation and running based on the

previous time the program was compiled or executed

<?php

require_once('includes/functions.php');

date_default_timezone_set('Africa/Lagos');

 if($_POST){

 if(isset($_POST['code']) && isset($_POST['folder_level']) &&

isset($_POST['getSub']) && $_POST['getSub'] == 1 &&

isset($_POST['folder_name'])){

 $code = filter($_POST['code']);

 $folder_level = filter($_POST['folder_level']);

 $folder_name = filter($_POST['folder_name']);

 $qry = "SELECT code_id FROM codes_tbl WHERE

codes_tbl.code_name='".$code."' AND

codes_tbl.folder_name='".$folder_name."' AND

codes_tbl.folder_level='".$folder_level."'";

 $rslt = mysql_query($qry) or die(mysql_error());

 if(mysql_num_rows($rslt)==1){

 $row = mysql_fetch_array($rslt);

 $code_id = $row['code_id'];

 $query = "SELECT * FROM codes_tbl,

submitted_codes_tbl,code_submission_tbl WHERE codes_tbl.code_id =

'".$code_id."' AND submitted_codes_tbl.code_id = '".$code_id."' AND

submitted_codes_tbl.code_submission_id =

code_submission_tbl.code_submission_id ORDER BY

submitted_codes_tbl.date_submitted DESC";

 $result = mysql_query($query, $link);

 if(mysql_num_rows($result) == 0){

 $data = 1;

 }else if(mysql_num_rows($result) >= 1){

 $row = mysql_fetch_array($result);

 $data = $row['submission_id'];

 } else {

 $data = 2. "me";

 }

 }else{

 $data = 4;

 }

 echo $data;

 }

 if(isset($_POST['submissionID']) && isset($_POST['code']) &&

isset($_POST['folder_level']) && isset($_POST['folder_name'])){

 $submissionID = filter($_POST['submissionID']);

 $code = filter($_POST['code']);

 $folder_level = filter($_POST['folder_level']);

 $folder_name = filter($_POST['folder_name']);

 $cquery = "SELECT code_id FROM codes_tbl WHERE code_name =

'".$code."' AND folder_name = '".$folder_name."' AND

codes_tbl.folder_level='".$folder_level."'";

 $rcquery = mysql_query($cquery, $link);

86

 if(mysql_num_rows($rcquery) == 0){

 $out = 3;

 } else if(mysql_num_rows($rcquery) == 1){

 $row = mysql_fetch_array($rcquery);

 $code_id = $row['code_id'];

 $subQ = "INSERT INTO code_submission_tbl VALUES('',

'$submissionID')";

 $rsubQ = mysql_query($subQ, $link);

 if(mysql_affected_rows($link) == 1){

 $subID = mysql_insert_id();

 $date = date('d-m-y H:i:s');

 $codeSubQ = "INSERT INTO submitted_codes_tbl VALUES('',

'$code_id', '$subID', '$date')";

 $rcodeSubQ = mysql_query($codeSubQ, $link);

 if(mysql_affected_rows($link) == 1){

 $out = 1;

 }else{

 $out = 5;

 }

 } else {

 $out = 4;

 }

 } else {

 $out = 2;

 }

 echo $out;

 }

 }

?>

JQUERY function to open file in editor

function loadFile(fname, content, folder){

 //alert(folder);

 var folders = folder.toString().split('/');

 var folder_level = folders.length;

 var folder_name = folders[folders.length - 1];

 var fileExt = fname.toString().split('/');

 var num = fileExt.length;

 var fileName = fileExt[num-1].split('.');

 var new_file= {id: fileName[0]+"", text: content+"", syntax:

'Java', title: fileExt[num-1]+"", folderLevel: folder_level+"", folderName:

folder_name+"", path: folder+""};

 editAreaLoader.openFile('textarea_1', new_file);

 }

JQUERY AJAX function to request to save changes to a file

function doSaveChanges(data){

 $.ajax({

 type: "POST",

 url: "do_actions.php",

 data: data,

 success: function(result){

 //alert(result);

 if(result==1){

87

 $('#errSuccessContent').addClass('alert-

success').html("<button type=\"button\" class=\"close\" data-

dismiss=\"alert\">×</button>Saved! Changes

successfully saved.");

$('#errSuccessDiv').attr('display','block').slideDown(500);

 setTimeout(function() {

$('#errSuccessDiv').attr('display','none').slideUp(500);

 $('#errSuccessContent').removeClass('alert-

success',5000).html(' ');

 }, 5000);

 }else if(result==2){

 $('#errSuccessContent').addClass('alert-

danger').html("<button type=\"button\" class=\"close\" data-

dismiss=\"alert\">×</button>Error! changes could not

be saved, try again later.");

$('#errSuccessDiv').attr('display','block').slideDown(500);

 setTimeout(function() {

$('#errSuccessDiv').attr('display','none').slideUp(500);

 $('#errSuccessContent').removeClass('alert-

danger',5000).html(' ');

 }, 5000);

 }

 },

 error: function(error) {

 alert("error" + error.status + "occured");

 }

 });

 }

JQUERY AJAX REQUEST FUNCTION TO SUBMIT CODE FOR COMPILATION OR RUNNING

function submitCode(runCompile){

 var curFile1 = editAreaLoader.getCurrentFile("textarea_1");

 var content1 = curFile1.text;

 var file_name1 = curFile1.id + ".Java";

 var folder_level1 = curFile1.folderLevel;

 var folderName = curFile1.folderName;

 if(content1 == ""){

 //alert("empty");

 $('#err-btn').attr('display','inline').show();

 $('#err-span').html('load a file into editor before

executing').attr('display','inline').show();

 setTimeout(function() {

 $('#err-btn').attr('display','none').hide();

 $('#err-span').html(' ').hide();

 }, 5000);

 }else{

 $('#loader').attr('display','inline').show();

 var a = $('#stdInput').val();

 var stdin = $.trim(a);

 var sourceCode = encodeURIComponent(content1);

 data =

'runCode=1'+'&sourceCode='+sourceCode+'&stdInput='+stdin;

 $.ajax({

 type: "POST",

 url: "sphereEngine.php",

88

 data: data,

 success: function(result){

 d = $.parseJSON(result);

 if(d===null){

 $('#loader').attr('display','none').hide();

 $('#err-

btn').attr('display','inline').show();

 $('#err-span').html('Operation failed! try

again later').attr('display','inline').show();

 setTimeout(function() {

 $('#err-

btn').attr('display','none').hide();

 $('#err-

span').html(' ').hide();

 }, 5000);

 }else{

 var submissionID = d.id;

 insertSubmission(submissionID, file_name1,

folder_level1, folderName);

 fetchSubmission(submissionID, runCompile);

 }

 },

 error: function(error) {

 alert("error " + error.status + "occured");

 }

 });

 }

 }

JQUERY AJAX REQUEST FUNCTION TO INSERT SUBMISSION DETAILS INTO THE DATABASE

function insertSubmission(submissionID, code, folder_level, folder_name){

 data =

'submissionID='+submissionID+'&code='+code+'&folder_level='+folder_level+'&

folder_name='+folder_name;

 var outResult;

 $.ajax({

 type: "POST",

 url: "handleSubmissions.php",

 async: false,

 data: data,

 success: function(result){

 //successful insertion

 outResult;

 },

 error: function(error) {

 alert("error " + error.status + "occured");

 outResult = 0;

 }

 });

 }

JQUERY AJAX REQUEST FUNCTION TO FETCH SUBMISSION DETAILS FROM CLOUD SERVER

function fetchSubmission(submissionID, runCompile){

 data = 'fetchSubmission=1'+'&submissionID='+submissionID;

89

 if(runCompile == 2){

 var btn = "compile";

 }else{

 var btn = "run";

 }

 $.ajax({

 type: "POST",

 url: "sphereEngine.php",

 data: data,

 success: function(resultReturned){

 if(resultReturned===null || resultReturned == ""){

 $('#loader').attr('display','none').hide();

 $('#err-btn').attr('display','inline').show();

 $('#err-span').html('Operation failed! try

again later').attr('display','inline').show();

 setTimeout(function() {

 $('#err-

btn').attr('display','none').hide();

 $('#err-span').html(' ').hide();

 }, 5000);

 } else {

 var dt = $.parseJSON(resultReturned);

 if(dt.status!= 0){

 var curFile =

editAreaLoader.getCurrentFile("textarea_1");

 var content = curFile.text;

 var file_name = curFile.id + ".Java";

 var folder_level = curFile.folderLevel;

 var folder_name = curFile.folderName;

 var d = getLastSubID(file_name,

folder_level, folder_name);

 setTimeout(function() {

 fetchSubmission(d, runCompile);

 }, 1000);

 }else{

 switch(dt.result){

 case 11:

$('#loader').attr('display','none').hide();

//$("#"+btn).attr('disabled','false');

 $('#err-

btn').attr('display','inline').show();

 $('#err-

span').html('Compilation Error!').attr('display','inline').show();

 setTimeout(function() {

 $('#err-

btn').attr('display','none').hide();

 $('#err-

span').html(' ').hide();

 }, 5000);

$('#compInfo').html("<pre>"+dt.cmpinfo+"</pre>");

$('#compInfoDiv').attr('display', 'block').show();

 break;

 case 12:

 //alert("12 happened");

 break;

90

 case 13:

 //alert("13 happened");

 break;

 case 15:

$('#loader').attr('display','none').hide();

//$("#"+btn).attr('disabled','false');

 $('#succ-

btn').attr('display','inline').show();

 $('#succ-

span').html('Success!').attr('display','inline').show();

 setTimeout(function() {

 $('#succ-

btn').attr('display','none').hide();

 $('#succ-

span').html(' ').hide();

 }, 5000);

 var out = "";

 if(runCompile === 1){

 out = "<span style =

\"color: green\">Succesful";

 } else {

 out = "<span style =

\"color: green\">Succesfully compiled";

 }

 $('#compInfo').html("<pre>" +

out +"</pre>");

$('#compInfoDiv').attr('display', 'block').show();

 if(runCompile === 1){

$('#outputData').html("<pre>"+dt.output+"</pre>");

$('#outputDiv').attr('display','block').show();

 }

 break;

 case 17:

 //alert("17 happened");

 break;

 case 19:

 //alert("19 happened");

 break;

 case 20:

 //alert("20 happened");

 break;

 }

 //alert(89);

 }

 //}

 }

 },

 error: function(error) {

 alert("error " + error.status + "occured");

 }

 });

 }

91

