Show simple item record

Intelligent detection of anomalies in telecommunications customer behaviour

dc.contributor.advisorPotgieter, Aneten_ZA
dc.contributor.authorOsunmakinde, Isaac Olusegunen_ZA
dc.date.accessioned2014-08-13T19:31:54Z
dc.date.accessioned2018-11-26T13:52:59Z
dc.date.available2014-08-13T19:31:54Z
dc.date.available2018-11-26T13:52:59Z
dc.date.issued2006en_ZA
dc.identifier.urihttp://hdl.handle.net/11427/6430
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/11427/6430
dc.descriptionWord processed copy.en_ZA
dc.description.abstractIn this research, we present a modelling technique that can efficiently facilitate anomaly detection that will help call analysts and managers with adaptive decision-making. We developed and implemented a Data 'fransformation System (DTS), a new Hybrid Genetic Algorithm (HGA) and an Anomaly Detection System (ADS) to address this challenge.en_ZA
dc.language.isoengen_ZA
dc.subject.otherComputer Scienceen_ZA
dc.titleIntelligent detection of anomalies in telecommunications customer behaviouren_ZA
dc.typeThesisen_ZA
dc.type.qualificationlevelMastersen_ZA
dc.type.qualificationnameMScen_ZA
dc.publisher.institutionUniversity of Cape Town
dc.publisher.facultyFaculty of Scienceen_ZA
dc.publisher.departmentDepartment of Computer Scienceen_ZA


Files in this item

FilesSizeFormatView
thesis_sci_2006_osunmakinde_i_d.pdf6.606Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record