dc.description.abstract | This paper describes some recent results of our collaborative work on
developing a speech recognition system for the automatic transcription
or media archives from the British Broadcasting Corporation (BBC). The
material includes a wide diversity of shows with their associated
metadata. The latter are highly diverse in terms of completeness,
reliability and accuracy. First, we investigate how to improve lightly
supervised acoustic training, when timestamp information is inaccurate
and when speech deviates significantly from the transcription, and how
to perform evaluations when no reference transcripts are available.
An automatic timestamp correction method as well as a word and segment
level combination approaches between the lightly supervised transcripts
and the original programme scripts are presented which yield improved
metadata. Experimental results show that systems trained using the
improved metadata consistently outperform those trained with only the
original lightly supervised decoding hypotheses. Secondly, we show that
the recognition task may benefit from systems trained on a combination
of in-domain and out-of-domain data. Working with tandem HMMs, we
describe Multi-level Adaptive Networks, a novel technique for
incorporating information from out-of domain posterior features using
deep neural network. We show that it provides a substantial reduction in
WER over other systems including a PLP-based baseline, in-domain tandem
features, and the best out-of-domain tandem features. | |