Show simple item record

Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes

dc.creatorCurtis, Christina
dc.creatorLandis, Gary N
dc.creatorFolk, Donna
dc.creatorWehr, Nancy B
dc.creatorHoe, Nicholas
dc.creatorWaskar, Morris
dc.creatorAbdueva, Diana
dc.creatorSkvortsov, Dmitriy
dc.creatorFord, Daniel
dc.creatorLuu, Allan
dc.creatorBadrinath, Ananth
dc.creatorLevine, Rodney L
dc.creatorBradley, Timothy J
dc.creatorTavare, Simon
dc.creatorTower, John
dc.date.accessioned2007-12-09
dc.date.accessioned2018-11-24T23:17:39Z
dc.date.available2011-06-17T14:28:51Z
dc.date.available2018-11-24T23:17:39Z
dc.date.issued2007-12-09
dc.identifierhttp://www.dspace.cam.ac.uk/handle/1810/238213
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3137
dc.description.abstractAbstract Background Several interventions increase lifespan in model organisms, including reduced insulin/insulin-like growth factor-like signaling (IIS), FOXO transcription factor activation, dietary restriction, and superoxide dismutase (SOD) over-expression. One question is whether these manipulations function through different mechanisms, or whether they intersect on common processes affecting aging. Results A doxycycline-regulated system was used to over-express manganese-SOD (MnSOD) in adult Drosophila, yielding increases in mean and maximal lifespan of 20%. Increased lifespan resulted from lowered initial mortality rate and required MnSOD over-expression in the adult. Transcriptional profiling indicated that the expression of specific genes was altered by MnSOD in a manner opposite to their pattern during normal aging, revealing a set of candidate biomarkers of aging enriched for carbohydrate metabolism and electron transport genes and suggesting a true delay in physiological aging, rather than a novel phenotype. Strikingly, cross-dataset comparisons indicated that the pattern of gene expression caused by MnSOD was similar to that observed in long-lived Caenorhabditis elegans insulin-like signaling mutants and to the xenobiotic stress response, thus exposing potential conserved longevity promoting genes and implicating detoxification in Drosophila longevity. Conclusion The data suggest that MnSOD up-regulation and a retrograde signal of reactive oxygen species from the mitochondria normally function as an intermediate step in the extension of lifespan caused by reduced insulin-like signaling in various species. The results implicate a species-conserved net of coordinated genes that affect the rate of senescence by modulating energetic efficiency, purine biosynthesis, apoptotic pathways, endocrine signals, and the detoxification and excretion of metabolites.
dc.languageen
dc.rightsCurtis et al.; licensee BioMed Central Ltd.
dc.titleTranscriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes
dc.typeArticle


Files in this item

FilesSizeFormatView
gb-2007-8-12-r262.pdf1.867Mbapplication/pdfView/Open
gb-2007-8-12-r262.xml274.7Kbtext/xmlView/Open
GB-2007-8-12-R262-S1.PDF79.33Kbapplication/pdfView/Open
GB-2007-8-12-R262-S10.PDF62.02Kbapplication/pdfView/Open
GB-2007-8-12-R262-S11.PDF108.0Kbapplication/pdfView/Open
GB-2007-8-12-R262-S2.PDF934.0Kbapplication/pdfView/Open
GB-2007-8-12-R262-S3.XLS95.74Kbapplication/vnd.ms-excelView/Open
GB-2007-8-12-R262-S4.XLS10.47Mbapplication/vnd.ms-excelView/Open
GB-2007-8-12-R262-S5.PDF23.91Kbapplication/pdfView/Open
GB-2007-8-12-R262-S6.XLS1.908Mbapplication/vnd.ms-excelView/Open
GB-2007-8-12-R262-S7.PDF29.99Kbapplication/pdfView/Open
GB-2007-8-12-R262-S8.PDF17.59Kbapplication/pdfView/Open
GB-2007-8-12-R262-S9.PDF21.41Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record