dc.creator | Button, Jack | |
dc.creator | Roney-Dougal, Colva M | |
dc.date.accessioned | 2018-11-24T23:26:16Z | |
dc.date.available | 2014-09-30T14:42:57Z | |
dc.date.available | 2018-11-24T23:26:16Z | |
dc.date.issued | 2014-09-23 | |
dc.identifier | https://www.repository.cam.ac.uk/handle/1810/246088 | |
dc.identifier.uri | http://repository.aust.edu.ng/xmlui/handle/123456789/3799 | |
dc.description.abstract | Helfgott proved that there exists a δ > 0 such that if S is a symmetric generating subset of SL(2, p)containing 1 then either S^3=SL(2, p)or |S^3| ≥|S|^1+ δ. It is known that δ ≥ 1/3024. Here we show that δ ≤ (log_2 (7) −1)/6 ≈ 0.3012and we present evidence suggesting that this might be the true value of δ. | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.publisher | Journal of Algebra | |
dc.rights | http://creativecommons.org/licenses/by/2.0/uk/ | |
dc.rights | Attribution 2.0 UK: England & Wales | |
dc.title | An explicit upper bound for the Helfgott delta in SL(2,p) | |
dc.type | Article | |