Show simple item record

An explicit upper bound for the Helfgott delta in SL(2,p)

dc.creatorButton, Jack
dc.creatorRoney-Dougal, Colva M
dc.date.accessioned2018-11-24T23:26:16Z
dc.date.available2014-09-30T14:42:57Z
dc.date.available2018-11-24T23:26:16Z
dc.date.issued2014-09-23
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/246088
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3799
dc.description.abstractHelfgott proved that there exists a δ > 0 such that if S is a symmetric generating subset of SL(2, p)containing 1 then either S^3=SL(2, p)or |S^3| ≥|S|^1+ δ. It is known that δ ≥ 1/3024. Here we show that δ ≤ (log_2 (7) −1)/6 ≈ 0.3012and we present evidence suggesting that this might be the true value of δ.
dc.languageen
dc.publisherElsevier
dc.publisherJournal of Algebra
dc.rightshttp://creativecommons.org/licenses/by/2.0/uk/
dc.rightsAttribution 2.0 UK: England & Wales
dc.titleAn explicit upper bound for the Helfgott delta in SL(2,p)
dc.typeArticle


Files in this item

FilesSizeFormatView
ZD#4740_1-s2.0-S0021869314004888-main.pdf981.7Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record