Show simple item record

Ample subvarieties and q-ample divisors

dc.creatorOttem, John Christian
dc.date.accessioned2018-11-24T23:26:18Z
dc.date.available2014-11-06T12:28:43Z
dc.date.available2018-11-24T23:26:18Z
dc.date.issued2012-03-20
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/246300
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3804
dc.description.abstractWe introduce a notion of ampleness for subschemes of any codimension using the theory of q-ample line bundles. We also investigate certain geometric properties satisfied by ample subvarieties, e.g. the Lefschetz hyperplane theorems and numerical positivity. Using these properties, we also construct a counterexample to the converse of the Andreotti-Grauert vanishing theorem.
dc.languageen
dc.publisherElsevier
dc.publisherAdvances in Mathematics
dc.subjectAmple subschemes
dc.subjectPartially positive line bundles
dc.titleAmple subvarieties and q-ample divisors
dc.typeArticle


Files in this item

FilesSizeFormatView
1105.2500.pdf256.0Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record