dc.creator | Ottem, John Christian | |
dc.date.accessioned | 2018-11-24T23:26:18Z | |
dc.date.available | 2014-11-06T12:28:43Z | |
dc.date.available | 2018-11-24T23:26:18Z | |
dc.date.issued | 2012-03-20 | |
dc.identifier | https://www.repository.cam.ac.uk/handle/1810/246300 | |
dc.identifier.uri | http://repository.aust.edu.ng/xmlui/handle/123456789/3804 | |
dc.description.abstract | We introduce a notion of ampleness for subschemes of any codimension
using the theory of q-ample line bundles. We also investigate certain geometric
properties satisfied by ample subvarieties, e.g. the Lefschetz hyperplane
theorems and numerical positivity. Using these properties, we also construct a
counterexample to the converse of the Andreotti-Grauert vanishing theorem. | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.publisher | Advances in Mathematics | |
dc.subject | Ample subschemes | |
dc.subject | Partially positive line bundles | |
dc.title | Ample subvarieties and q-ample divisors | |
dc.type | Article | |