Show simple item record

The Fourier transform for certain hyperKähler fourfolds

dc.creatorShen, Mingmin
dc.creatorVial, Charles Louis
dc.date.available2014-11-12T14:35:27Z
dc.date.issued2015-11-18
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/246357
dc.description.abstractUsing a codimension-1 algebraic cycle obtained from the Poincar e line bundle, Beauville de ned the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring CH (A). By using a codimension-2 algebraic cycle representing the Beauville-Bogomolov class, we give evidence for the existence of a similar decomposition for the Chow ring of hyperk ahler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. We indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.
dc.languageen
dc.publisherAmerican Mathematical Society
dc.publisherThe Fourier transform for certain hyperKähler fourfolds
dc.subjectHyperkähler manifolds
dc.subjectIrreducible holomorphic symplectic varieties
dc.subjectCubic fourfolds
dc.subjectFano schemes of lines
dc.subjectK3 surfaces
dc.subjectHilbert schemes of points
dc.subjectAbelian varieties
dc.subjectMotives
dc.subjectAlgebraic cycles
dc.subjectChow groups
dc.subjectChow ring
dc.subjectChow-Künneth decomposition
dc.subjectBloch-Beilinson filtration
dc.subjectModified diagonals
dc.titleThe Fourier transform for certain hyperKähler fourfolds
dc.typeArticle


Files in this item

FilesSizeFormatView
ChowHK-MemAMS5.pdf923.7Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record