Show simple item record

On the motive of some hyperKaehler varieties

dc.creatorVial, Charles Louis
dc.date.accessioned2018-11-24T23:26:25Z
dc.date.available2015-06-18T12:27:55Z
dc.date.available2018-11-24T23:26:25Z
dc.date.issued2015-06-05
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/248547
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3823
dc.description.abstractWe show that the motive of the Hilbert scheme of length-n subschemes on a K3 surface or on an abelian surface admits a decomposition similar to the decomposition of the motive of an abelian variety obtained by Shermenev, Beauville, and Deninger and Murre.
dc.languageen
dc.publisherDe Gruyter
dc.publisherJournal für die reine und angewandte Mathematik
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsCreative Commons Attribution 4.0 International License
dc.subjectHyperkahler manifolds
dc.subjectIrreducible holomorphic symplectic varieties
dc.subjectK3 surfaces
dc.subjectabelian varieties
dc.subjectHilbert schemes of points
dc.subjectMotives
dc.subjectAlgebraic cycles
dc.subjectChow ring
dc.subjectChow-Kunneth decomposition
dc.subjectBloch-Beilinson filtration
dc.titleOn the motive of some hyperKaehler varieties
dc.typeArticle


Files in this item

FilesSizeFormatView
Vial 2015 Journ ... angewandte Mathematik.pdf321.1Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record