| dc.creator | Dervan, Ruadhai |  | 
| dc.date.accessioned | 2018-11-24T23:26:43Z |  | 
| dc.date.available | 2016-04-20T14:58:37Z |  | 
| dc.date.available | 2018-11-24T23:26:43Z |  | 
| dc.date.issued | 2016 |  | 
| dc.identifier | https://www.repository.cam.ac.uk/handle/1810/255087 |  | 
| dc.identifier.uri | http://repository.aust.edu.ng/xmlui/handle/123456789/3872 |  | 
| dc.description.abstract | We give a criterion for the coercivity of the Mabuchi functional for general Kàhler classes on Fano manifolds in terms of Tian's alpha invariant. This generalises a result of Tian in the anti-canonical case implying the existence of a Kàhler-Einstein metric. We also prove the alpha invariant is a continuous function on the Kàhler cone. As an application, we provide new Kàhler classes on a general degree one del Pezzo surface for which the Mabuchi functional is coercive. |  | 
| dc.language | en |  | 
| dc.publisher | Université Paul Sabatier |  | 
| dc.publisher | Annales de la Faculté des Sciences de Toulouse |  | 
| dc.title | Alpha invariants and coercivity of the Mabuchi functional on Fano manifolds |  | 
| dc.type | Article |  |