dc.creator | Dervan, Ruadhai | |
dc.date.accessioned | 2018-11-24T23:26:43Z | |
dc.date.available | 2016-04-20T14:58:37Z | |
dc.date.available | 2018-11-24T23:26:43Z | |
dc.date.issued | 2016 | |
dc.identifier | https://www.repository.cam.ac.uk/handle/1810/255087 | |
dc.identifier.uri | http://repository.aust.edu.ng/xmlui/handle/123456789/3872 | |
dc.description.abstract | We give a criterion for the coercivity of the Mabuchi functional for general Kàhler classes on Fano manifolds in terms of Tian's alpha invariant. This generalises a result of Tian in the anti-canonical case implying the existence of a Kàhler-Einstein metric. We also prove the alpha invariant is a continuous function on the Kàhler cone. As an application, we provide new Kàhler classes on a general degree one del Pezzo surface for which the Mabuchi functional is coercive. | |
dc.language | en | |
dc.publisher | Université Paul Sabatier | |
dc.publisher | Annales de la Faculté des Sciences de Toulouse | |
dc.title | Alpha invariants and coercivity of the Mabuchi functional on Fano manifolds | |
dc.type | Article | |