Show simple item record

A Liouville hyperbolic souvlaki

dc.creatorCarmesin, Johannes
dc.creatorFederici, B
dc.creatorGeorgakopoulos, A
dc.date.accessioned2017-03-05
dc.date.accessioned2018-11-24T23:27:19Z
dc.date.available2017-06-01T12:36:54Z
dc.date.available2018-11-24T23:27:19Z
dc.date.issued2017-04-25
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/264570
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3961
dc.description.abstractWe construct a transient bounded-degree graph no transient subgraph of which embeds in any surface of finite genus. Moreover, we construct a transient, Liouville, bounded-degree, Gromov–hyperbolic graph with trivial hyperbolic boundary that has no transient subtree. This answers a question of Benjamini. This graph also yields a (further) counterexample to a conjecture of Benjamini and Schramm. In an appendix by Gábor Pete and Gourab Ray, our construction is extended to yield a unimodular graph with the above properties.
dc.languageen
dc.publisherInstitute of Mathematical Statistics
dc.publisherElectronic Journal of Probability
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.subjectLiouville property
dc.subjecthyperbolic graph
dc.subjectinfinite graph
dc.subjectamenability
dc.subjecttransience
dc.subjectflow
dc.subjectharmonic function
dc.titleA Liouville hyperbolic souvlaki
dc.typeArticle


Files in this item

FilesSizeFormatView
Carmesin_et_al- ... nal_of_Probability-VoR.pdf549.6Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record