Show simple item record

Bounded Height in Families of Dynamical Systems

dc.creatorDeMarco, L
dc.creatorGhioca, D
dc.creatorKrieger, Holly Christine
dc.creatorDang Nguyen, K
dc.creatorTucker, T
dc.creatorYe, H
dc.date.accessioned2017-07-06
dc.date.accessioned2018-11-24T23:27:34Z
dc.date.available2017-11-01T15:55:43Z
dc.date.available2018-11-24T23:27:34Z
dc.date.issued2017-08-29
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/268021
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/4005
dc.description.abstractLet a, b ∈ $\bar{\mathbb{Q}}$ be such that exactly one of a and b is an algebraic integer, and let f$_{t}$(z) := z$^{2}$ + t be a family of polynomials parameterized by t ∈ $\bar{\mathbb{Q}}$. We prove that the set of all t ∈ $\bar{\mathbb{Q}}$ for which there exist m, n ≥ 0 such that f$^{m}_{t}$(a) = f$^{n}_{t}$(b) has bounded height. This is a special case of a more general result supporting a new bounded height conjecture in arithmetic dynamics.
dc.publisherOxford University Press
dc.publisherInternational Mathematics Research Notices
dc.titleBounded Height in Families of Dynamical Systems
dc.typeArticle


Files in this item

FilesSizeFormatView
BoundedHeight.pdf319.2Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record