Show simple item record

Moore-Penrose Pseudoinverse and Applications.

dc.contributor.authorAreji, Jonathan Gebechukwu
dc.date.accessioned2022-08-25T08:04:43Z
dc.date.available2022-08-25T08:04:43Z
dc.date.issued2019-06-10
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/5055
dc.description2019 Pure and Applied Mathematics Masters Thesesen_US
dc.description.abstractAn underlying theorem due to Gauss and Lengendre asserts that for an over determined system, there are solutions that minimize kAx − bk 2 which is given by the generalized in-verse of the matrix A even when A is singular or rectangular. Our objective is to prove algebraic analogs of this result for arbitrary operators on complex Hilbert spaces and its generalization for the Moore-Penrose Inverse. We employ the generalized inverse matrix of Moore-Penrose to study the existence and uniqueness of the solutions for over- and under-determined linear systems, in harmony with the least squares method.en_US
dc.description.sponsorshipAUSTen_US
dc.language.isoenen_US
dc.publisherAUSTen_US
dc.subject2019 Pure and Applied Mathematics Thesesen_US
dc.subjectAreji Jonathan Gebechukwuen_US
dc.subjectProf. E. H. Zeroualien_US
dc.titleMoore-Penrose Pseudoinverse and Applications.en_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record