Show simple item record

Asymptotics of Gaussian Regularized Least-Squares

dc.date.accessioned2005-12-22T02:40:10Z
dc.date.accessioned2018-11-24T10:24:38Z
dc.date.available2005-12-22T02:40:10Z
dc.date.available2018-11-24T10:24:38Z
dc.date.issued2005-10-20
dc.identifier.urihttp://hdl.handle.net/1721.1/30577
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/30577
dc.description.abstractWe consider regularized least-squares (RLS) with a Gaussian kernel. Weprove that if we let the Gaussian bandwidth $\sigma \rightarrow\infty$ while letting the regularization parameter $\lambda\rightarrow 0$, the RLS solution tends to a polynomial whose order iscontrolled by the relative rates of decay of $\frac{1}{\sigma^2}$ and$\lambda$: if $\lambda = \sigma^{-(2k+1)}$, then, as $\sigma \rightarrow\infty$, the RLS solution tends to the $k$th order polynomial withminimal empirical error. We illustrate the result with an example.
dc.format.extent1 p.
dc.format.extent7286963 bytes
dc.format.extent527607 bytes
dc.language.isoen_US
dc.subjectAI
dc.subjectmachine learning
dc.subjectregularization
dc.titleAsymptotics of Gaussian Regularized Least-Squares


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2005-067.pdf527.6Kbapplication/pdfView/Open
MIT-CSAIL-TR-2005-067.ps7.286Mbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record