Asymptotics of Gaussian Regularized Least-Squares
dc.date.accessioned | 2005-12-22T02:40:10Z | |
dc.date.accessioned | 2018-11-24T10:24:38Z | |
dc.date.available | 2005-12-22T02:40:10Z | |
dc.date.available | 2018-11-24T10:24:38Z | |
dc.date.issued | 2005-10-20 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/30577 | |
dc.identifier.uri | http://repository.aust.edu.ng/xmlui/handle/1721.1/30577 | |
dc.description.abstract | We consider regularized least-squares (RLS) with a Gaussian kernel. Weprove that if we let the Gaussian bandwidth $\sigma \rightarrow\infty$ while letting the regularization parameter $\lambda\rightarrow 0$, the RLS solution tends to a polynomial whose order iscontrolled by the relative rates of decay of $\frac{1}{\sigma^2}$ and$\lambda$: if $\lambda = \sigma^{-(2k+1)}$, then, as $\sigma \rightarrow\infty$, the RLS solution tends to the $k$th order polynomial withminimal empirical error. We illustrate the result with an example. | |
dc.format.extent | 1 p. | |
dc.format.extent | 7286963 bytes | |
dc.format.extent | 527607 bytes | |
dc.language.iso | en_US | |
dc.subject | AI | |
dc.subject | machine learning | |
dc.subject | regularization | |
dc.title | Asymptotics of Gaussian Regularized Least-Squares |
Files in this item
Files | Size | Format | View |
---|---|---|---|
MIT-CSAIL-TR-2005-067.pdf | 527.6Kb | application/pdf | View/ |
MIT-CSAIL-TR-2005-067.ps | 7.286Mb | application/postscript | View/ |