A Note on the Generalization Performance of Kernel Classifiers with Margin

Unknown author (2000-05-01)

We present distribution independent bounds on the generalization misclassification performance of a family of kernel classifiers with margin. Support Vector Machine classifiers (SVM) stem out of this class of machines. The bounds are derived through computations of the $V_gamma$ dimension of a family of loss functions where the SVM one belongs to. Bounds that use functions of margin distributions (i.e. functions of the slack variables of SVM) are derived.