dc.description.abstract | There has been great interest in realising the Semantic Web. Ontologies are used to define Semantic Web applications. Ontologies have grown to be large and complex to the point where it causes cognitive overload for humans, in understanding and maintaining, and for machines, in processing and reasoning. Furthermore, building ontologies from scratch is time-consuming and not always necessary. Prospective ontology developers could consider using existing ontologies that are of good quality. However, an entire large ontology is not always required for a particular application, but a subset of the knowledge may be relevant. Modularity deals with simplifying an ontology for a particular context or by structure into smaller ontologies, thereby preserving the contextual knowledge. There are a number of benefits in modularising an ontology including simplified maintenance and machine processing, as well as collaborative efforts whereby work can be shared among experts. Modularity has been successfully applied to a number of different ontologies to improve usability and assist with complexity. However, problems exist for modularity that have not been satisfactorily addressed. Currently, modularity tools generate large modules that do not exclusively represent the context. Partitioning tools, which ought to generate disjoint modules, sometimes create overlapping modules. These problems arise from a number of issues: different module types have not been clearly characterised, it is unclear what the properties of a 'good' module are, and it is unclear which evaluation criteria applies to specific module types. In order to successfully solve the problem, a number of theoretical aspects have to be investigated. It is important to determine which ontology module types are the most widely-used and to characterise each such type by distinguishing properties. One must identify properties that a 'good' or 'usable' module meets. In this thesis, we investigate these problems with modularity systematically. We begin by identifying dimensions for modularity to define its foundation: use-case, technique, type, property, and evaluation metric. Each dimension is populated with sub-dimensions as fine-grained values. The dimensions are used to create an empirically-based framework for modularity by classifying a set of ontologies with them, which results in dependencies among the dimensions. The formal framework can be used to guide the user in modularising an ontology and as a starting point in the modularisation process. To solve the problem with module quality, new and existing metrics were implemented into a novel tool TOMM, and an experimental evaluation with a set of modules was performed resulting in dependencies between the metrics and module types. These dependencies can be used to determine whether a module is of good quality. For the issue with existing modularity techniques, we created five new algorithms to improve the current tools and techniques and experimentally evaluate them. The algorithms of the tool, NOMSA, performs as well as other tools for most performance criteria. For NOMSA's generated modules, two of its algorithms' generated modules are good quality when compared to the expected dependencies of the framework. The remaining three algorithms' modules correspond to some of the expected values for the metrics for the ontology set in question. The success of solving the problems with modularity resulted in a formal foundation for modularity which comprises: an exhaustive set of modularity dimensions with dependencies between them, a framework for guiding the modularisation process and annotating module, a way to measure the quality of modules using the novel TOMM tool which has new and existing evaluation metrics, the SUGOI tool for module management that has been investigated for module interchangeability, and an implementation of new algorithms to fill in the gaps of insufficient tools and techniques. | en_ZA |