Show simple item record

Autoregressive HMMs for speech synthesis

dc.creatorShannon, SM
dc.creatorByrne, William Joseph
dc.date.accessioned2018-11-24T13:10:52Z
dc.date.available2010-09-10T16:57:01Z
dc.date.available2018-11-24T13:10:52Z
dc.date.issued2009
dc.identifierhttp://www.dspace.cam.ac.uk/handle/1810/226373
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/2838
dc.description.abstractWe propose the autoregressive HMM for speech synthesis. We show that the autoregressive HMM supports efficient EM parameter estimation and that we can use established effective synthesis techniques such as synthesis considering global variance with minimal modification. The autoregressive HMM uses the same model for parameter estimation and synthesis in a consistent way, in contrast to the standard HMM synthesis framework, and supports easy and efficient parameter estimation, in contrast to the trajectory HMM. We find that the autoregressive HMM gives performance comparable to the standard HMM synthesis framework on a Blizzard Challenge-style naturalness evaluation.
dc.languageen
dc.publisherISCA (International Speech Communication Association)
dc.rightshttp://creativecommons.org/licenses/by/2.0/uk/
dc.rightsAttribution 2.0 UK: England & Wales
dc.titleAutoregressive HMMs for speech synthesis
dc.typeConference Object


Files in this item

FilesSizeFormatView
shannon2009ahs.pdf150.0Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record