Show simple item record

Second-generation high-temperature superconducting coils and their applications for energy storage

dc.contributorCoombs, Tim
dc.creatorYuan, Weijia
dc.date.accessioned2018-11-24T13:10:54Z
dc.date.available2011-02-07T09:59:02Z
dc.date.available2018-11-24T13:10:54Z
dc.date.issued2010-11-16
dc.identifierhttp://www.dspace.cam.ac.uk/handle/1810/229754
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/229754
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/2846
dc.description.abstractSince a superconductor has no resistance below a certain temperature and can therefore save a large amount of energy dissipated, it is a 'green' material by saving energy loss and hence reducing carbon emissions. Recently the massive manufacture of high-temperature superconducting (HTS) materials has enabled superconductivity to become a preferred candidate to help generation and transportation of cleaner energy. One of the most promising applications of superconductors is Superconducting Magnetic Energy Storage (SMES) systems, which are becoming the enabling engine for improving the capacity, efficiency, and reliability of the electric system. SMES systems store energy in the magnetic field created by the flow of direct current in a superconducting coil. SMES systems have many advantages compared to other energy storage systems: high cyclic efficiency, fast response time, deep discharge and recharge ability, and a good balance between power density and energy density. Based on these advantages, SMES systems will play an indispensable role in improving power qualities, integrating renewable energy sources and energizing transportation systems. This thesis describes an intensive study of superconducting pancake coils wound using second-generation(2G) HTS materials and their application in SMES systems. The specific contribution of this thesis includes an innovative design of the SMES system, an easily calculated, but theoretically advanced numerical model to analyse the system, extensive experiments to validate the design and model, and a complete demonstration experiment of the prototype SMES system. This thesis begins with literature review which includes the introduction of the background theory of superconductivity and development of SMES systems. Following the literature review is the theoretical work. A prototype SMES system design, which provides the maximum stored energy for a particular length of conductors, has been investigated. Furthermore, a new numerical model, which can predict all necessary operation parameters, including the critical current and AC losses of the system, is presented. This model has been extended to analyse superconducting coils in different situations as well. To validate the theoretical design and model, several superconducting coils, which are essential parts of the prototype SMES system, together with an experimental measurement set-up have been built. The coils have been energized to test their energy storage capability. The operation parameters including the critical current and AC losses have been measured. The results are consistent with the theoretical predictions. Finally the control system is developed and studied. A power electronics control circuit of the prototype SMES system has been designed and simulated. This control circuit can energize or discharge the SMES system dynamically and robustly. During a voltage sag compensation experiment, this SMES prototype monitored the power system and successfully compensated the voltage sag when required. By investigating the process of building a complete system from the initial design to the final experiment, the concept of a prototype SMES system using newly available 2G HTS tapes was validated. This prototype SMES system is the first step towards the implementation of future indsutrial SMES systems with bigger capacities, and the knowledge obtained through this research provides a comprehensive overview of the design of complete SMES systems.
dc.languageen
dc.publisherUniversity of Cambridge
dc.publisherDepartment of Engineering
dc.subjectSuperconducting magnets
dc.subjectAC loss
dc.subjectHigh temperature superconducotor
dc.subjectCoated conductor
dc.subjectEnergy storage
dc.subjectCritical current
dc.subjectVoltage sag
dc.subjectElectric motor
dc.subjectSuperconducting coil
dc.titleSecond-generation high-temperature superconducting coils and their applications for energy storage
dc.typeThesis


Files in this item

FilesSizeFormatView
thesis_final.pdf7.975Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record