Show simple item record

Simulations of turbulent swirl combustors

dc.contributorMastorakos, Epaminondas
dc.creatorAyache, Simon Victor
dc.date.accessioned2018-11-24T13:11:38Z
dc.date.available2012-08-14T11:11:22Z
dc.date.available2018-11-24T13:11:38Z
dc.date.issued2012-07-03
dc.identifierhttp://www.dspace.cam.ac.uk/handle/1810/243609
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/243609
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/2995
dc.description.abstractThis thesis aims at improving our knowledge on swirl combustors. The work presented here is based on Large Eddy Simulations (LES) coupled to an advanced combustion model: the Conditional Moment Closure (CMC). Numerical predictions have been systematically compared and validated with detailed experimental datasets. In order to analyze further the physics underlying the large numerical datasets, Proper Orthogonal Decomposition (POD) has also been used throughout the thesis. Various aspects of the aerodynamics of swirling flames are investigated, such as precession or vortex formation caused by flow oscillations, as well as various combustion aspects such as localized extinctions and flame lift-off. All the above affect flame stabilization in different ways and are explored through focused simulations. The first study investigates isothermal air flows behind an enclosed bluff body, with the incoming flow being pulsated. These flows have strong similarities to flows found in combustors experiencing self-excited oscillations and can therefore be considered as canonical problems. At high enough forcing frequencies, double ring vortices are shed from the air pipe exit. Various harmonics of the pulsating frequency are observed in the spectra and their relation with the vortex shedding is investigated through POD. The second study explores the structure of the Delft III piloted turbulent non-premixed flame. The simple configuration allows to analyze further key combustion aspects of combustors, with further insights provided on the dynamics of localized extinctions and re-ignition, as well as the pollutants emissions. The third study presents a comprehensive analysis of the aerodynamics of swirl flows based on the TECFLAM confined non-premixed S09c configuration. A periodic component inside the air inlet pipe and around the central bluff body is observed, for both the inert and reactive flows. POD shows that these flow oscillations are due to single and double helical vortices, similar to Precessing Vortex Cores (PVC), that develop inside the air inlet pipe and whose axes rotate around the burner. The combustion process is found to affect the swirl flow aerodynamics. Finally, the fourth study investigates the TECFLAM configuration again, but here attention is given to the flame lift-off evident in experiments and reproduced by the LES-CMC formulation. The stabilization process and the pollutants emission of the flame are investigated in detail.
dc.languageen
dc.publisherUniversity of Cambridge
dc.publisherDepartment of Engineering
dc.publisherSelwyn College
dc.subjectLarge Eddy Simulation
dc.subjectConditional Moment Closure
dc.subjectProper Orthogonal Decomposition
dc.subjectCombustion
dc.subjectSwirl flame
dc.subjectPrecessing Vortex Core
dc.subjectVortex shedding
dc.subjectPulsating flow
dc.subjectRecirculation zone
dc.subjectBurner
dc.subjectAerodynamics
dc.subjectFlame lift-off
dc.subjectCombustion instabilities
dc.subjectFlame stability
dc.subjectLocalised extinctions
dc.subjectBluff body flow
dc.subjectHarmonics
dc.subjectPiloted flame
dc.subjectMode decomposition
dc.subjectPollutant emission
dc.subjectCombustor
dc.subjectInjector
dc.subjectNon-premixed flame
dc.subjectLES
dc.subjectCMC
dc.subjectTurbulent reacting flows
dc.subjectTurbulence
dc.subjectNumerical combustion
dc.titleSimulations of turbulent swirl combustors
dc.typeThesis


Files in this item

FilesSizeFormatView
Simon_Ayache_PhD_thesis_2011.pdf24.06Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record