Show simple item record

Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET

dc.creatorTan, Michael Loong P
dc.creatorLentaris, Georgios
dc.creatorAmaratunga, Gehan Anil
dc.date.accessioned2012-08-09
dc.date.accessioned2018-11-24T13:11:43Z
dc.date.available2012-09-25T19:11:18Z
dc.date.available2018-11-24T13:11:43Z
dc.date.issued2012-08-19
dc.identifierhttp://www.dspace.cam.ac.uk/handle/1810/243769
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3014
dc.description.abstractAbstractThe performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency.
dc.languageen
dc.rightsMichael Loong Tan et al.; licensee BioMed Central Ltd.
dc.titleDevice and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET
dc.typeArticle


Files in this item

FilesSizeFormatView
1556-276X-7-467.pdf1.791Mbapplication/pdfView/Open
1556-276X-7-467.xml64.08Kbtext/xmlView/Open

This item appears in the following Collection(s)

Show simple item record