Show simple item record

Metrisability of three-dimensional path geometries

dc.creatorDunajski, Maciej Lukasz
dc.creatorEastwood, Michael
dc.date.accessioned2015-11-19
dc.date.accessioned2018-11-24T23:19:18Z
dc.date.available2016-09-12T10:19:59Z
dc.date.available2018-11-24T23:19:18Z
dc.date.issued2016-03-08
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/260105
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3419
dc.description.abstractGiven a projective structure on a three-dimensional manifold, we find explicit obstructions to the local existence of a Levi-Civita connection in the projective class. These obstructions are given by projectively invariant tensors algebraically constructed from the projective Weyl curvature. We show, by examples, that their vanishing is necessary but not sufficient for local metrisability.
dc.languageen
dc.publisherSpringer
dc.publisherEuropean Journal of Mathematics
dc.subjectprojective differential geometry
dc.subjectpath geometry
dc.subjectWeyl geometry
dc.subjectmetrisability
dc.titleMetrisability of three-dimensional path geometries
dc.typeArticle


Files in this item

FilesSizeFormatView
Dunajski_et_al- ... rnal_of_Mathematics-AM.pdf246.0Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record