Show simple item record

On the energy dissipation rate at the inner edge of circumbinary discs

dc.creatorTerquem, Caroline
dc.creatorPapaloizou, John Christopher
dc.date.accessioned2016-09-28
dc.date.accessioned2018-11-24T23:19:29Z
dc.date.available2016-11-22T13:37:36Z
dc.date.available2018-11-24T23:19:29Z
dc.date.issued2016-10-03
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/261265
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3456
dc.description.abstractWe study, by means of numerical simulations and analysis, the details of the accretion process from a disc on to a binary system. We show that energy is dissipated at the edge of a circumbinary disc and this is associated with the tidal torque that maintains the cavity: angular momentum is transferred from the binary to the disc through the action of compressional shocks and viscous friction. These shocks can be viewed as being produced by fluid elements that drift into the cavity and, before being accreted, are accelerated on to trajectories that send them back to impact the disc. The rate of energy dissipation is approximately equal to the product of potential energy per unit mass at the disc's inner edge and the accretion rate, estimated from the disc parameters just beyond the cavity edge, that would occur without the binary. For very thin discs, the actual accretion rate on to the binary may be significantly less. We calculate the energy emitted by a circumbinary disc taking into account energy dissipation at the inner edge and also irradiation arising there from reprocessing of light from the stars. We find that, for tight PMS binaries, the SED is dominated by emission from the inner edge at wavelengths between 1–4 and 10 μm. This may apply to systems like CoRoT 223992193 and V1481 Ori.
dc.languageen
dc.publisherOxford University Press
dc.publisherMonthly Notices of the Royal Astronomical Society
dc.subjectaccretion, accretion discs
dc.subjecthydrodynamics
dc.subjectbinaries: general
dc.subjectstars: pre-main-sequence
dc.titleOn the energy dissipation rate at the inner edge of circumbinary discs
dc.typeArticle


Files in this item

FilesSizeFormatView
Terquem_et_al-2 ... stronomical_Society-AM.pdf7.777Mbapplication/pdfView/Open
Terquem_et_al-2 ... tronomical_Society-VoR.pdf12.30Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record