Show simple item record

Tropical Amplitudes

dc.creatorTourkine, Piotr
dc.date.accessioned2017-01-03
dc.date.accessioned2018-11-24T23:19:39Z
dc.date.available2017-03-17T15:44:27Z
dc.date.available2018-11-24T23:19:39Z
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/263133
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3495
dc.description.abstractIn this work, we argue that the α′→0 limit of closed string theory scattering amplitudes is a tropical limit. The motivation is to develop a technology to systematize the extraction of Feynman graphs from string theory amplitudes at higher genus. An important technical input from tropical geometry is the use of tropical theta functions with characteristics to rigorously derive the worldline limit of the worldsheet propagator. This enables us to perform a non-trivial computation at two loops: we derive the tropical form of the integrand of the genus-two four-graviton type II string amplitude, which matches the direct field theory computations. At the mathematical level, this limit is an implementation of the correspondence between the moduli space of Riemann surfaces and the tropical moduli space.
dc.languageen
dc.publisherSpringer
dc.publisherAnnales Henri Poincaré
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.subjecthep-th
dc.subjecthep-th
dc.subjectmath.AG
dc.titleTropical Amplitudes
dc.typeArticle


Files in this item

FilesSizeFormatView
Tourkine-2017-Annales_Henri_Poincaré-VoR.pdf1.203Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record