Show simple item record

Synoptic-to-planetary scale wind variability enhances phytoplankton biomass at ocean fronts

dc.creatorWhitt, DB
dc.creatorTaylor, John Ryan
dc.creatorLévy, M
dc.date.accessioned2017-05-08
dc.date.accessioned2018-11-24T23:20:21Z
dc.date.available2017-08-08T16:08:01Z
dc.date.available2018-11-24T23:20:21Z
dc.date.issued2017-06-01
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/266054
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3594
dc.description.abstractIn nutrient-limited conditions, phytoplankton growth at fronts is enhanced by winds, which drive upward nutrient fluxes via enhanced turbulent mixing and upwelling. Hence, depth-integrated phytoplankton biomass can be 10 times greater at isolated fronts. Using theory and two-dimensional simulations with a coupled physical-biogeochemical ocean model, this paper builds conceptual understanding of the physical processes driving upward nutrient fluxes at fronts forced by unsteady winds with timescales of 4–16 days. The largest vertical nutrient fluxes occur when the surface mixing layer penetrates the nutricline, which fuels phytoplankton in the mixed layer. At a front, mixed layer deepening depends on the magnitude and direction of the wind stress, cross-front variations in buoyancy and velocity at the surface, and potential vorticity at the base of the mixed layer, which itself depends on past wind events. Consequently, mixing layers are deeper and more intermittent in time at fronts than outside fronts. Moreover, mixing can decouple in time from the wind stress, even without other sources of physical variability. Wind-driven upwelling also enhances depth-integrated phytoplankton biomass at fronts; when the mixed layer remains shallower than the nutricline, this results in enhanced subsurface phytoplankton. Oscillatory along-front winds induce both oscillatory and mean upwelling. The mean effect of oscillatory vertical motion is to transiently increase subsurface phytoplankton over days to weeks, whereas slower mean upwelling sustains this increase over weeks to months. Taken together, these results emphasize that wind-driven phytoplankton growth is both spatially and temporally intermittent and depends on a diverse combination of physical processes.
dc.languageen
dc.publisherAmerican Geophysical Union
dc.publisherJournal of Geophysical Research: Oceans
dc.subjectEkman buoyancy flux
dc.subjectfronts
dc.subjectEkman pumping
dc.subjectatmosphere-ocean interaction
dc.subjectnutrient fluxes
dc.subjectprimary production
dc.titleSynoptic-to-planetary scale wind variability enhances phytoplankton biomass at ocean fronts
dc.typeArticle


Files in this item

FilesSizeFormatView
jgrc22306.pdf6.435Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record