Show simple item record

Kriging prediction for manifold-valued random fields

dc.creatorPigoli, Davide
dc.creatorMenafoglio, Alessandra
dc.creatorSecchi, Piercesare
dc.date.accessioned2018-11-24T23:26:31Z
dc.date.available2015-12-17T16:42:42Z
dc.date.available2018-11-24T23:26:31Z
dc.date.issued2015-12-25
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/253013
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3843
dc.description.abstractThe statistical analysis of data belonging to Riemannian manifolds is becoming increasingly important in many applications, such as shape analysis, diffusion tensor imaging and the analysis of covariance matrices. In many cases, data are spatially distributed but it is not trivial to take into account spatial dependence in the analysis because of the non linear geometry of the manifold. This work proposes a solution to the problem of spatial prediction for manifold valued data, with a particular focus on the case of positive definite symmetric matrices. Under the hypothesis that the dispersion of the observations on the manifold is not too large, data can be projected on a suitably chosen tangent space, where an additive model can be used to describe the relationship between response variable and covariates. Thus, we generalize classical kriging prediction, dealing with the spatial dependence in this tangent space, where well established Euclidean methods can be used. The proposed kriging prediction is applied to the matrix field of covariances between temperature and precipitation in Quebec, Canada.
dc.languageen
dc.publisherElsevier
dc.publisherJournal of Multivariate Analysis
dc.subjectnon Euclidean data
dc.subjectresidual kriging
dc.subjectpositive definite symmetric matrices
dc.titleKriging prediction for manifold-valued random fields
dc.typeArticle


Files in this item

FilesSizeFormatView
Pigoli et al 20 ... Multivariate Analysis.pdf624.0Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record