Show simple item record

Cubulating hyperbolic free-by-cyclic groups: the irreducible case

dc.creatorHagen, Mark Fearghus
dc.creatorWise, Daniel T
dc.date.accessioned2018-11-24T23:26:34Z
dc.date.available2016-03-07T14:01:33Z
dc.date.available2018-11-24T23:26:34Z
dc.date.issued2016
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/254205
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3853
dc.description.abstractLet V be a fi nite graph and let ∅ : V → V be an irreducible train track map whose mapping torus has word-hyperbolic fundamental group G. Then G acts freely and cocompactly on a CAT(0) cube complex. Hence, if F is a finite-rank free group and Φ : F → F an irreducible monomorphism so that G = F∗ᵩ is word-hyperbolic, then G acts freely and cocompactly on a CAT(0) cube complex. This holds in particular if Φ is an irreducible automorphism with G = F ⋊ᵩ Z word-hyperbolic.
dc.languageen
dc.publisherDuke University Press
dc.publisherDuke Mathematical Journal
dc.titleCubulating hyperbolic free-by-cyclic groups: the irreducible case
dc.typeArticle


Files in this item

FilesSizeFormatView
Hagen & Wise 2016 Duke Mathematical Journal.pdf2.068Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record