Show simple item record

On the Cauchy Problem for the Homogeneous Boltzmann-Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments

dc.creatorBriant, Marc
dc.creatorEinav, Amit
dc.date.accessioned2018-11-24T23:26:44Z
dc.date.available2016-04-21T11:54:49Z
dc.date.available2018-11-24T23:26:44Z
dc.date.issued2016
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/255110
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3875
dc.description.abstractThe Boltzmann-Nordheim equation is a modification of the Boltzmann equation, based on physical considerations, that describes the dynamics of the distribution of particles in a quantum gas composed of bosons or fermions. In this work we investigate the Cauchy theory of the spatially homogeneous Boltzmann-Nordheim equation for bosons, in dimension d⩾3. We show existence and uniqueness locally in time for any initial data in L∞(1+|v|s) with finite mass and energy, for a suitable s, as well as the instantaneous creation of moments of all order.
dc.languageen
dc.publisherSpringer
dc.publisherJournal of Statistical Physics
dc.subjectBoltzmann-Nordheim equation
dc.subjectkinetic model for bosons
dc.subjectBose-Einstein condensation
dc.subjectsubcritical solutions
dc.subjectlocal Cauchy problem
dc.titleOn the Cauchy Problem for the Homogeneous Boltzmann-Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments
dc.typeArticle


Files in this item

FilesSizeFormatView
Briant_et_al-20 ... Statistical_Physics-AM.pdf574.3Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record