Show simple item record

Semi-continuity of stability for sheaves and variation of Gieseker moduli spaces

dc.creatorGreb, Daniel
dc.creatorRoss, Julius Andrew
dc.creatorToma, Matei
dc.date.accessioned2018-11-24T23:26:46Z
dc.date.available2016-05-09T08:23:24Z
dc.date.available2018-11-24T23:26:46Z
dc.date.issued2016
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/255920
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3880
dc.description.abstractWe investigate a semi-continuity property for stability conditions for sheaves that is important for the problem of variation of the moduli spaces as the stability condition changes. We place this in the context of a notion of stability previously considered by the authors, called multi-Gieseker-stability, that generalises the classical notion of Gieseker-stability to allow for several polarisations. As such we are able to prove that on smooth threefolds certain moduli spaces of Gieseker-stable sheaves are related by a finite number of Thaddeus-flips (that is flips arising for Variation of Geometric Invariant Theory) whose intermediate spaces are themselves moduli spaces of sheaves.
dc.languageen
dc.publisherDe Gruyter
dc.publisherJournal für die reine und angewandte Mathematik
dc.subjectGieseker stability
dc.subjectvariation of moduli spaces
dc.subjectchamber structures
dc.subjectmoduli of quiver representations
dc.subjectsemistable sheaves on Kähler manifolds
dc.titleSemi-continuity of stability for sheaves and variation of Gieseker moduli spaces
dc.typeArticle


Files in this item

FilesSizeFormatView
Greb_et_al-2016 ... gewandte_Mathematik-AM.pdf458.5Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record