Show simple item record

Tests for separability in nonparametric covariance operators of random surfaces

dc.creatorAston, John Alexander
dc.creatorPigoli, Davide
dc.creatorTavakoli, Shahin
dc.date.accessioned2016-06-23
dc.date.accessioned2018-11-24T23:26:49Z
dc.date.available2016-08-01T11:29:47Z
dc.date.available2018-11-24T23:26:49Z
dc.date.issued2016
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/256921
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3893
dc.description.abstractThe assumption of separability of the covariance operator for a random image or hypersurface can be of substantial use in applications, especially in situations where the accurate estimation of the full covariance structure is unfeasible, either for computational reasons, or due to a small sample size. However, inferential tools to verify this assumption are somewhat lacking in high-dimensional or functional data analysis settings, where this assumption is most relevant. We propose here to test separability by focusing on K- dimensional projections of the difference between the covariance operator and a nonparametric separable approximation. The subspace we project onto is one generated by the eigenfunctions of the covariance operator estimated under the separability hypothesis, negating the need to ever estimate the full non-separable covariance. We show that the rescaled difference of the sample covariance operator with its separable approximation is asymptotically Gaussian. As a by-product of this result, we derive asymptotically pivotal tests under Gaussian assumptions, and propose bootstrap methods for approximating the distribution of the test statistics. We probe the finite sample performance through simulations studies, and present an application to log-spectrogram images from a phonetic linguistics dataset.
dc.languageen
dc.publisherInstitute of Mathematical Statistics
dc.publisherAnnals of Statistics
dc.titleTests for separability in nonparametric covariance operators of random surfaces
dc.typeArticle


Files in this item

FilesSizeFormatView
Aston_et_al-2016-Annals_of_Statistics-AM.pdf561.9Kbapplication/pdfView/Open
euclid.aos.1498636862-1.pdf413.2Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record