dc.creator | Kane, Daniel M | |
dc.creator | Thorne, Jack Arfon | |
dc.date.accessioned | 2016-07-11 | |
dc.date.accessioned | 2018-11-24T23:26:50Z | |
dc.date.available | 2016-08-22T10:02:38Z | |
dc.date.available | 2018-11-24T23:26:50Z | |
dc.date.issued | 2016-09-09 | |
dc.identifier | https://www.repository.cam.ac.uk/handle/1810/257362 | |
dc.identifier.uri | http://repository.aust.edu.ng/xmlui/handle/123456789/3898 | |
dc.description.abstract | We study the variation of the $\phi$-Selmer groups of the elliptic curves y$^2$ = x$^3$ − Dx under quartic twists by square-free integers. We obtain a complete description of the distribution of the size of this group when the integer D is constrained to lie in a family for which the relative Tamagawa number of the isogeny $\phi$ is fixed. | |
dc.language | en | |
dc.publisher | Cambridge University Press | |
dc.publisher | Mathematical Proceedings of the Cambridge Philosophical Society | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | Attribution-NonCommercial 4.0 International | |
dc.rights | Attribution-NonCommercial 4.0 International | |
dc.rights | Attribution-NonCommercial 4.0 International | |
dc.title | On the $\phi$-Selmer groups of the elliptic curves y$^2$ = x$^3$ - Dx | |
dc.type | Article | |