Show simple item record

On the $\phi$-Selmer groups of the elliptic curves y$^2$ = x$^3$ - Dx

dc.creatorKane, Daniel M
dc.creatorThorne, Jack Arfon
dc.date.accessioned2016-07-11
dc.date.accessioned2018-11-24T23:26:50Z
dc.date.available2016-08-22T10:02:38Z
dc.date.available2018-11-24T23:26:50Z
dc.date.issued2016-09-09
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/257362
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3898
dc.description.abstractWe study the variation of the $\phi$-Selmer groups of the elliptic curves y$^2$ = x$^3$ − Dx under quartic twists by square-free integers. We obtain a complete description of the distribution of the size of this group when the integer D is constrained to lie in a family for which the relative Tamagawa number of the isogeny $\phi$ is fixed.
dc.languageen
dc.publisherCambridge University Press
dc.publisherMathematical Proceedings of the Cambridge Philosophical Society
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.rightsAttribution-NonCommercial 4.0 International
dc.titleOn the $\phi$-Selmer groups of the elliptic curves y$^2$ = x$^3$ - Dx
dc.typeArticle


Files in this item

FilesSizeFormatView
Kane_et_al-2016 ... ilosophical_Society-AM.pdf509.7Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record