Show simple item record

Arithmetic invariant theory and 2-descent for plane quartic curves

dc.creatorThorne, Jack Arfon
dc.date.accessioned2016-07-18
dc.date.accessioned2018-11-24T23:26:52Z
dc.date.available2016-09-15T11:48:57Z
dc.date.available2018-11-24T23:26:52Z
dc.date.issued2016-09-27
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/260166
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3903
dc.description.abstractGiven a smooth plane quartic curve C over a field $\textit{k}$ of characteristic 0, with Jacobian variety $\textit{J}$, and a marked rational point P $\in$ C($\textit{k}$), we construct a reductive group $\textit{G}$ and a $\textit{G}$-variety $\textit{X}$, together with an injection $\textit{J}$($\textit{k}$)/2$\textit{J}$($\textit{k}$) $\hookrightarrow$ $\textit{G}$($\textit{k}$)\$\textit{X}$($\textit{k}$). We do this using the Mumford theta group of the divisor 2$\Theta$ of $\textit{J}$, and a construction of Lurie which passes from Heisenberg groups to Lie algebras.
dc.languageen
dc.publisherMathematical Sciences Publishers
dc.publisherAlgebra & Number Theory
dc.titleArithmetic invariant theory and 2-descent for plane quartic curves
dc.typeArticle


Files in this item

FilesSizeFormatView
ant-v10-n7-p01-s.pdf1.165Mbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record