dc.creator | Thorne, Jack Arfon | |
dc.date.accessioned | 2016-07-18 | |
dc.date.accessioned | 2018-11-24T23:26:52Z | |
dc.date.available | 2016-09-15T11:48:57Z | |
dc.date.available | 2018-11-24T23:26:52Z | |
dc.date.issued | 2016-09-27 | |
dc.identifier | https://www.repository.cam.ac.uk/handle/1810/260166 | |
dc.identifier.uri | http://repository.aust.edu.ng/xmlui/handle/123456789/3903 | |
dc.description.abstract | Given a smooth plane quartic curve C over a field $\textit{k}$ of characteristic 0, with Jacobian variety $\textit{J}$, and a marked rational point P $\in$ C($\textit{k}$), we construct a reductive group $\textit{G}$ and a $\textit{G}$-variety $\textit{X}$, together with an injection $\textit{J}$($\textit{k}$)/2$\textit{J}$($\textit{k}$) $\hookrightarrow$ $\textit{G}$($\textit{k}$)\$\textit{X}$($\textit{k}$). We do this using the Mumford theta group of the divisor 2$\Theta$ of $\textit{J}$, and a construction of Lurie which passes from Heisenberg groups to Lie algebras. | |
dc.language | en | |
dc.publisher | Mathematical Sciences Publishers | |
dc.publisher | Algebra & Number Theory | |
dc.title | Arithmetic invariant theory and 2-descent for plane quartic curves | |
dc.type | Article | |