dc.creator | Lindenstrauss, E | |
dc.creator | Varju, Peter Pal | |
dc.date.accessioned | 2015-11-24 | |
dc.date.accessioned | 2018-11-24T23:26:58Z | |
dc.date.available | 2016-12-05T10:33:34Z | |
dc.date.available | 2018-11-24T23:26:58Z | |
dc.date.issued | 2016-11-01 | |
dc.identifier | https://www.repository.cam.ac.uk/handle/1810/261424 | |
dc.identifier.uri | http://repository.aust.edu.ng/xmlui/handle/123456789/3924 | |
dc.description.abstract | We study random walks on the groups $\Bbb F^d_p \rtimes$ SL$_d$($\Bbb F_p$). We estimate the spectral gap in terms of the spectral gap of the projection to the linear part SL$_d$($\Bbb F_p$). This problem is motivated by an analogue in the group $\Bbb R^d \rtimes$ SO($d$), which have application to smoothness of self-similar measures. | |
dc.language | en | |
dc.publisher | University of Toulouse | |
dc.publisher | Annales de la Faculte des Sciences de Toulouse | |
dc.publisher | http://afst.cedram.org/item?id=AFST_2016_6_25_5_969_0 | |
dc.title | Spectral gap in the group of affine transformations over prime fields | |
dc.type | Article | |