dc.creator | Rasmussen, Sarah Dean | |
dc.date.accessioned | 2016-10-20 | |
dc.date.accessioned | 2018-11-24T23:27:00Z | |
dc.date.available | 2017-01-12T10:22:31Z | |
dc.date.available | 2018-11-24T23:27:00Z | |
dc.date.issued | 2017-05 | |
dc.identifier | https://www.repository.cam.ac.uk/handle/1810/261832 | |
dc.identifier.uri | http://repository.aust.edu.ng/xmlui/handle/123456789/3927 | |
dc.description.abstract | We present a graph manifold analog of the Jankins–Neumann classification of Seifert fibered spaces over $S^2$ admitting taut foliations, providing a finite recursive formula to compute the L-space Dehn-filling interval for any graph manifold with torus boundary. As an application of a generalization of this result to Floer simple manifolds, we compute the L-space interval for any cable of a Floer simple knot complement in a closed three-manifold in terms of the original L-space interval, recovering a result of Hedden and Hom as a special case. | |
dc.language | en | |
dc.publisher | Cambridge University Press | |
dc.publisher | Compositio Mathematica | |
dc.subject | graph manifold | |
dc.subject | taut foliation | |
dc.subject | L-space | |
dc.subject | Heegaard Floe | |
dc.title | L-space intervals for graph manifolds and cables | |
dc.type | Article | |