Show simple item record

L-space intervals for graph manifolds and cables

dc.creatorRasmussen, Sarah Dean
dc.date.accessioned2016-10-20
dc.date.accessioned2018-11-24T23:27:00Z
dc.date.available2017-01-12T10:22:31Z
dc.date.available2018-11-24T23:27:00Z
dc.date.issued2017-05
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/261832
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3927
dc.description.abstractWe present a graph manifold analog of the Jankins–Neumann classification of Seifert fibered spaces over $S^2$ admitting taut foliations, providing a finite recursive formula to compute the L-space Dehn-filling interval for any graph manifold with torus boundary. As an application of a generalization of this result to Floer simple manifolds, we compute the L-space interval for any cable of a Floer simple knot complement in a closed three-manifold in terms of the original L-space interval, recovering a result of Hedden and Hom as a special case.
dc.languageen
dc.publisherCambridge University Press
dc.publisherCompositio Mathematica
dc.subjectgraph manifold
dc.subjecttaut foliation
dc.subjectL-space
dc.subjectHeegaard Floe
dc.titleL-space intervals for graph manifolds and cables
dc.typeArticle


Files in this item

FilesSizeFormatView
Rasmussen-2017-Compositio_Mathematica-AM.pdf520.5Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record