Show simple item record

Freiman homomorphisms on sparse random sets

dc.creatorConlon, D
dc.creatorGowers, William Timothy
dc.date.accessioned2016-10-21
dc.date.accessioned2018-11-24T23:27:00Z
dc.date.available2017-01-19T10:58:44Z
dc.date.available2018-11-24T23:27:00Z
dc.date.issued2017-02-03
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/261922
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3928
dc.description.abstractA result of Fiz Pontiveros shows that if $A$ is a random subset of $\mathbb{Z}_N$ where each element is chosen independently with probability $N^{-1/2+o(1)}$, then with high probability every Freiman homomorphism defined on $A$ can be extended to a Freiman homomorphism on the whole of $\mathbb{Z}_N$. In this paper we improve the bound to $CN^{-2/3}(\log N)^{1/3}$, which is best possible up to the constant factor.
dc.languageen
dc.publisherOxford University Press
dc.publisherQuarterly Journal of Mathematics
dc.titleFreiman homomorphisms on sparse random sets
dc.typeArticle


Files in this item

FilesSizeFormatView
Conlon_et_al-20 ... rnal_of_Mathematics-AM.pdf384.7Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record