Show simple item record

Stackings and the W-cycles conjecture

dc.creatorLouder, L
dc.creatorWilton, Henry John
dc.date.accessioned2016-04-05
dc.date.accessioned2018-11-24T23:27:01Z
dc.date.available2017-02-08T09:33:33Z
dc.date.available2018-11-24T23:27:01Z
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/262356
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3932
dc.description.abstractWe prove Wise’s W-cycles conjecture: Consider a compact graph Γ′ immersing into another graph Γ. For any immersed cycle Λ : S¹ → Γ, we consider the map Λ′ from the circular components S of the pullback to Γ′. Unless Λ′ is reducible, the degree of the covering map S → S¹ is bounded above by minus the Euler characteristic of Γ′. As a corollary, any finitely generated subgroup of a one-relator group has finitely generated Schur multiplier.
dc.languageen
dc.publisherCanadian Mathematical Society
dc.publisherCanadian Mathematical Bulletin
dc.subjectfree groups
dc.subjectone-relator groups
dc.subjectright-orderability
dc.titleStackings and the W-cycles conjecture
dc.typeArticle


Files in this item

FilesSizeFormatView
Louder_and_Wilt ... thematical_Bulletin-AM.pdf207.3Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record