Show simple item record

Radically filtered quasi-hereditary algebras and rigidity of tilting modules

dc.creatorHAZI, Amit
dc.date.accessioned2016-10-26
dc.date.accessioned2018-11-24T23:27:06Z
dc.date.available2017-04-07T08:37:37Z
dc.date.available2018-11-24T23:27:06Z
dc.date.issued2017-09
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/263501
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3946
dc.description.abstractLet $\textit{A}$ be a quasi-hereditary algebra. We prove that in many cases, a tilting module is rigid (i.e. has identical radical and socle series) if it does not have certain subquotients whose composition factors extend more than one layer in the radical series or the socle series. We apply this theorem to show that the restricted tilting modules for $\textit{SL}$$_4$($K$) are rigid, where $K$ is an algebraically closed field of characteristic $p$ $\geqslant$ 5.
dc.languageen
dc.publisherCambridge University Press
dc.publisherMathematical Proceedings of the Cambridge Philosophical Society
dc.titleRadically filtered quasi-hereditary algebras and rigidity of tilting modules
dc.typeArticle


Files in this item

FilesSizeFormatView
Hazi-2017-Mathe ... ilosophical_Society-AM.pdf400.1Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record