Show simple item record

K-stability for Kähler manifolds

dc.creatorDervan, Ruadhai
dc.creatorRoss, Julius Andrew
dc.date.accessioned2016-12-16
dc.date.accessioned2018-11-24T23:27:31Z
dc.date.available2017-09-11T15:17:57Z
dc.date.available2018-11-24T23:27:31Z
dc.date.issued2017-09
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/267143
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3994
dc.description.abstractWe formulate a notion of K-stability for Kähler manifolds, and prove one direction of the Yau–Tian–Donaldson conjecture in this setting. More precisely, we prove that the Mabuchi functional being bounded below (resp. coercive) implies K-semistability (resp. uniformly K-stable). In particular this shows that the existence of a constant scalar curvature Kähler metric implies K-semistability, and K-stability if one assumes the automorphism group is discrete. We also show how Stoppa’s argument holds in the Kähler case, giving a simpler proof of this K-stability statement.
dc.publisherInternational Press
dc.publisherMathematical Research Letters
dc.titleK-stability for Kähler manifolds
dc.typeArticle


Files in this item

FilesSizeFormatView
MRL-2017-0024-0003-a005.pdf323.2Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record