Show simple item record

Comments on: High-dimensional simultaneous inference with the bootstrap

dc.creatorLockhart, RA
dc.creatorSamworth, Richard John
dc.date.accessioned2017-05-08
dc.date.accessioned2018-11-24T23:27:31Z
dc.date.available2017-09-26T14:46:23Z
dc.date.available2018-11-24T23:27:31Z
dc.date.issued2017-12-01
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/267417
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3997
dc.description.abstractWe congratulate the authors on their stimulating contribution to the burgeoning high-dimensional inference literature. The bootstrap offers such an attractive methodology in these settings, but it is well-known that its naive application in the context of shrinkage/superefficiency is fraught with danger (e.g. Samworth, 2003; Chatterjee and Lahiri, 2011). The authors show how these perils can be elegantly sidestepped by working with de-biased, or de-sparsified, versions of estimators.
dc.languageen
dc.publisherSociedad de Estadistica e Investigacion Operativa
dc.publisherTest
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.subjectConfidence intervals
dc.subjectDe-biased estimator
dc.subjectHigh-dimensional inference
dc.titleComments on: High-dimensional simultaneous inference with the bootstrap
dc.typeArticle


Files in this item

FilesSizeFormatView
DBZDiscFinal.pdf175.6Kbapplication/pdfView/Open
Lockhart_and_Samworth-2017-TEST-VoR.pdf369.4Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record