Show simple item record

Sufficientness postulates for Gibbs-type priors and hierarchical generalizations

dc.creatorBacallado de Lara, Sergio Andres
dc.creatorBattiston, M
dc.creatorFavaro, S
dc.creatorTrippa, L
dc.date.accessioned2017-06-10
dc.date.accessioned2018-11-24T23:27:32Z
dc.date.available2018-01-10T16:20:21Z
dc.date.available2018-11-24T23:27:32Z
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/270479
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3999
dc.description.abstractA fundamental problem in Bayesian nonparametrics consists of selecting a prior distribution by assuming that the corresponding predictive probabilities obey certain properties. An early discussion of such a problem, although in a parametric framework, dates back to the seminal work by English philosopher W. E. Johnson, who introduced a noteworthy characterization for the predictive probabilities of the symmetric Dirichlet prior distribution. This is typically referred to as Johnson’s “sufficientness” postulate. In this paper we review some nonparametric generalizations of Johnson’s postulate for a class of nonparametric priors known as species sampling models. In particular we revisit and discuss the “sufficientness” postulate for the two parameter Poisson-Dirichlet prior within the more general framework of Gibbs-type priors and their hierarchical generalizations.
dc.publisherInstitute of Mathematical Statistics
dc.publisherStatistical Science
dc.subjectBayesian nonparametrics
dc.subjectDirichlet and two parameter Poisson–Dirichlet process
dc.subjectdiscovery probability
dc.subjectGibbs-type species sampling models
dc.subjecthierarchical species sampling models
dc.subjectJohnson’s “sufficientness” postulate
dc.subjectPólya-like urn scheme
dc.titleSufficientness postulates for Gibbs-type priors and hierarchical generalizations
dc.typeArticle


Files in this item

FilesSizeFormatView
urn_gibbs_revised_12jun17.pdf405.7Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record