Show simple item record

A Modified Subgradient Extragradeint Method for Variational Inequality Problems and Fixed Point Problems in Real Banach Spaces

dc.contributor.authorOsisiogu, Onyekachi
dc.date.accessioned2020-01-27T09:23:43Z
dc.date.available2020-01-27T09:23:43Z
dc.date.issued2017-12-18
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/4946
dc.description.abstractLet E be a 2-uniformly convex and uniformly smooth real Banach space with dual space E ∗ . Let A : C → E ∗ be a monotone and Lipschitz continuous mapping and U : C → C be relatively non- expansive. An algorithm for approximating the common elements of the set of fixed points of a relatively nonexpansive map U and the set of solutions of a variational inequality problem for the monotone and Lipschitz continuous map A in E is constructed and proved to converge strongly.en_US
dc.description.sponsorshipAUST and AfDB.en_US
dc.language.isoenen_US
dc.subjectOsisiogu Onyekachien_US
dc.subjectProf. Charles Ejikeme Chidumeen_US
dc.subject2017 Pure and Applied Mathematics Thesesen_US
dc.titleA Modified Subgradient Extragradeint Method for Variational Inequality Problems and Fixed Point Problems in Real Banach Spacesen_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record