A comparison of statistical and geometric reconstruction techniques : guidelines for correcting fossil hominin crania

Neeser, Rudolph (2007)

Includes bibliographical references (leaves 163-173).


The study of human evolution centres, to a large extent, around the study of fossil morphology, including the comparison and interpretation of these remains within the context of what is known about morphological variation within living species. However, many fossils suffer from environmentally caused damage (taphonomic distortion) which hinders any such interpretation: fossil material may be broken and fragmented while the weight and motion of overlaying sediments can cause their plastic distortion. To date, a number of studies have focused on the reconstruction of such taphonomically damaged specimens. These studies have used myriad approaches to reconstruction, including thin plate spline methods, mirroring, and regression-based approaches. The efficacy of these techniques remains to be demonstrated, and it is not clear how different parameters (e.g., sample sizes, landmark density, etc.) might effect their accuracy. In order to partly address this issue, this thesis examines three techniques used in the virtual reconstruction of fossil remains by statistical or geometrical means: mean substitution, thin plate spline warping (TPS), and multiple linear regression.