Imbibition dynamics of nano-particulate ink-jet drops on micro-porous media

Hsiao, W-K ; Hoath, Stephen Daniel ; Martin, GD ; Hutchings, Ian Michael ; Chilton, NB ; Jones, S (2011-06)

Conference Object

Ink-jet printing of nano-metallic colloidal fluids on to porous media such as coated papers has become a viable method to produce conductive tracks for low-cost, disposable printed electronic devices. However, the formation of well-defined and functional tracks on an absorbing surface is controlled by the drop imbibition dynamics in addition to the well-studied post-impact drop spreading behavior. This study represents the first investigation of the realtime imbibition of ink-jet deposited nano-Cu colloid drops on to coated paper substrates. In addition, the same ink was deposited on to a non-porous polymer surface as a control substrate. By using high-speed video imaging to capture the deposition of ink-jet drops, the time-scales of drop spreading and imbibition were quantified and compared with model predictions. The influences of the coating pore size on the bulk absorption rate and nano-Cu particle distribution have also been studied.