Non-abelian 3$D$ bosonization and quantum Hall states

Radičević, Ð ; Tong, David ; Turner, Carl (2016-12-01)

Article

Bosonization dualities relate two different Chern-Simons-matter theories, with bosonic matter on one side replaced by fermionic matter on the other. We first describe a more general class of non-Abelian bosonization dualities. We then explore the non-relativistic physics of these theories in the quantum Hall regime. The bosonic theory lies in a condensed phase and admits vortices which are known to form a non-Abelian quantum Hall state. We ask how this same physics arises in the fermionic theory. We find that a condensed boson corresponds to a fully filled Landau level of fermions, while bosonic vortices map to fermionic holes. We confirm that the ground state of the two theories is indeed described by the same quantum Hall wavefunction.