BPS Approaches to Anyons, Quantum Hall States and Quantum Gravity

Turner, Carl Peter (2017-10-03)

Thesis

We study three types of theories, using supersymmetry and ideas from string theory as tools to gain understanding of systems of more general interest. Firstly, we introduce non-relativistic Chern-Simons-matter field theories in three dimensions and study their anyonic spectrum in a conformal phase. These theories have supersymmetric completions, which in the non-relativistic case suffices to protect certain would-be BPS quantities from corrections. This allows us to compute one-loop exact anomalous dimensions of various bound states of non-Abelian anyons, analyse some interesting unitarity bound violations, and test some recently proposed bosonization dualities. Secondly, we turn on a chemical potential and break conformal invariance, putting the theory into the regime of the Fractional Quantum Hall Effect (FQHE). This is illustrated in detail: the theory supports would-be BPS vortices which model the electrons of the FQHE, and they form bag-like states with the appropriate filling fractions, Hall conductivities, and anyonic excitations. This formalism makes possible some novel explicit computations: an analytic calculation of the anyonic phases experienced by Abelian quasiholes; analytic relationships to the boundary Wess-Zumino-Witten model; and derivations of a wide class of QHE wavefunctions from a bulk field theory. We also further test the three-dimensional bosonization dualities in this new setting. Along the way, we accumulate new descriptions of the QHE. Finally, we turn away from flat space and investigate a problem in (3+1)-dimensional quantum gravity. We find that even as an effective theory, the theory has enough structure to suggest the inclusion of certain gravitational instantons in the path integral. An explicit computation in a minimally supersymmetric case illustrates the principles at work, and highlights the role of a hitherto unidentified scale in quantum gravity. It also is an interesting result in itself: a non-perturbative quantum instability of a flat supersymmetric Kaluza-Klein compactification.