Quadratic differentials as stability conditions

Bridgeland, Tom ; Smith, Ivan (2014)


We prove that moduli spaces of meromorphic quadratic differentials with simple zeroes on compact Riemann surfaces can be identified with spaces of stability conditions on a class of CY3 triangulated categories defined using quivers with potential associated to triangulated surfaces. We relate the finite-length trajectories of such quadratic differentials to the stable objects of the corresponding stability condition.