Show simple item record

Exceptional collections, and the Néron–Severi lattice for surfaces

dc.creatorVial, Charles Louis
dc.date.accessioned2016-10-06
dc.date.accessioned2018-11-24T23:26:58Z
dc.date.available2016-12-14T14:31:49Z
dc.date.available2018-11-24T23:26:58Z
dc.date.issued2017-01-10
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/261567
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3925
dc.description.abstractWe work out properties of smooth projective varieties X over a (not necessarily algebraically closed) field $\textit{k}$ that admit collections of objects in the bounded derived category of coherent sheaves D$^{b}$(X) that are either full exceptional, or numerically exceptional of maximal length. Our main result gives a necessary and sufficient condition on the Néron–Severi lattice for a smooth projective surface S with χ(O$_{S}$)=1 to admit a numerically exceptional collection of maximal length, consisting of line-bundles. As a consequence we determine exactly which complex surfaces with p$_{g}$=q=0 admit a numerically exceptional collection of maximal length. Another consequence is that a minimal geometrically rational surface with a numerically exceptional collection of maximal length is rational.
dc.languageen
dc.publisherElsevier
dc.publisherAdvances in Mathematics
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.subjectderived category of coherent sheaves
dc.subjectalgebraic surfaces
dc.subjectrationality
dc.subjectexceptional collections
dc.subjectmotives
dc.subjectprojective space
dc.titleExceptional collections, and the Néron–Severi lattice for surfaces
dc.typeArticle


Files in this item

FilesSizeFormatView
Vial-2016-Advances_in_Mathematics-AM.pdf462.7Kbapplication/pdfView/Open
Vial-2016-Advances_in_Mathematics-VoR.pdf648.4Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record