Show simple item record

On the number of non-zero elements of joint degree vectors

dc.creatorCzabarka, É
dc.creatorSadeghi, Kayvan
dc.creatorRauh, J
dc.creatorShort, T
dc.creatorSzékely, L
dc.date.accessioned2017-02-24
dc.date.accessioned2018-11-24T23:27:10Z
dc.date.available2017-05-08T13:45:57Z
dc.date.available2018-11-24T23:27:10Z
dc.date.issued2017-03-31
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/264143
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3959
dc.description.abstractJoint degree vectors give the number of edges between vertices of degree i and degree j for 1 ≤ i ≤ j ≤ n-1 in an n-vertex graph. We find lower and upper bounds for the maximum number of nonzero elements in a joint degree vector as a function of n. This provides an upper bound on the number of estimable parameters in the exponential random graph model with bidegree-distribution as its sufficient statistics.
dc.languageen
dc.publisherElectronic Journal of Combinatorics
dc.publisherThe Electronic Journal of Combinatorics
dc.subjectdegree sequence
dc.subjectjoint degree distribution
dc.subjectjoint degree vector
dc.subjectjoint degree matrix
dc.subjectbidegree distribution
dc.subjectexponential random graph model
dc.titleOn the number of non-zero elements of joint degree vectors
dc.typeArticle


Files in this item

FilesSizeFormatView
6385-20335-2-PB.pdf310.4Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record