Show simple item record

Critical Exponents on Fortuin-Kasteleyn Weighted Planar Maps

dc.creatorBerestycki, Nathanael Edouard
dc.creatorLaslier, Benoit
dc.creatorRay, Gourab
dc.date.accessioned2017-05-12
dc.date.accessioned2018-11-24T23:27:22Z
dc.date.available2017-11-09T17:05:41Z
dc.date.available2018-11-24T23:27:22Z
dc.date.issued2017-10-01
dc.identifierhttps://www.repository.cam.ac.uk/handle/1810/268296
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/123456789/3970
dc.description.abstractIn this paper we consider random planar maps weighted by the self-dual Fortuin--Kasteleyn model with parameter $q \in (0,4)$. Using a bijection due to Sheffield and a connection to planar Brownian motion in a cone we obtain rigorously the value of the critical exponent associated with the length of cluster interfaces, which is shown to be $$ \frac{4}{\pi} \arccos \left( \frac{\sqrt{2 - \sqrt{q}}}{2} \right)=\frac{\kappa'}{8}. $$ where $\kappa' $ is the SLE parameter associated with this model. We also derive the exponent corresponding to the area enclosed by a loop which is shown to be 1 for all values of $q \in (0,4)$. Applying the KPZ formula we find that this value is consistent with the dimension of SLE curves and SLE duality. Communicated by H.-T. Yau
dc.publisherSpringer
dc.publisherCOMMUNICATIONS IN MATHEMATICAL PHYSICS
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.titleCritical Exponents on Fortuin-Kasteleyn Weighted Planar Maps
dc.typeArticle


Files in this item

FilesSizeFormatView
Berestycki_et_a ... thematical_Physics-VoR.pdf1.009Mbapplication/pdfView/Open
FKrevision_March_2017.pdf870.8Kbapplication/pdfView/Open

This item appears in the following Collection(s)

Show simple item record