Show simple item record

On the Max-Flow Min-Cut Ratio for Directed Multicommodity Flows

dc.date.accessioned2005-12-12T23:22:48Z
dc.date.accessioned2018-11-24T10:23:47Z
dc.date.available2005-12-12T23:22:48Z
dc.date.available2018-11-24T10:23:47Z
dc.date.issued2003-07-05
dc.identifier.urihttp://hdl.handle.net/1721.1/29829
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/29829
dc.description.abstractWe give a pure combinatorial problem whose solution determines max-flow min-cut ratio for directed multicommodity flows. In addition, this combinatorial problem has applications in improving the approximation factor of Greedy algorithm for maximum edge disjoint path problem. More precisely, our upper bound improves the approximation factor for this problem to O(n^{3/4}). Finally, we demonstrate how even for very simple graphs the aforementioned ratio might be very large.
dc.format.extent5 p.
dc.format.extent7867417 bytes
dc.format.extent389570 bytes
dc.language.isoen_US
dc.titleOn the Max-Flow Min-Cut Ratio for Directed Multicommodity Flows


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2003-002.pdf389.5Kbapplication/pdfView/Open
MIT-CSAIL-TR-2003-002.ps7.867Mbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record