Generating Trees of (Reducible) 1324-avoiding Permutations
dc.date.accessioned | 2005-12-22T12:00:00Z | en_US |
dc.date.accessioned | 2018-11-24T10:23:55Z | |
dc.date.available | 2005-12-22T12:00:00Z | en_US |
dc.date.available | 2018-11-24T10:23:55Z | |
dc.date.issued | 2003-10-09 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/30426 | |
dc.identifier.uri | http://repository.aust.edu.ng/xmlui/handle/1721.1/30426 | |
dc.description.abstract | We consider permutations that avoid the pattern 1324. We give exact formulas for thenumber of reducible 1324-avoiding permutations and the number of {1324, 4132, 2413, 3241}-avoiding permutations. By studying the generating tree for all 1324-avoiding permutations,we obtain a recurrence formula for their number. A computer program provides data for thenumber of 1324-avoiding permutations of length up to 20. | |
dc.format.extent | 12 p. | |
dc.format.extent | 13383375 bytes | |
dc.format.extent | 567281 bytes | |
dc.language.iso | en_US | |
dc.title | Generating Trees of (Reducible) 1324-avoiding Permutations |
Files in this item
Files | Size | Format | View |
---|---|---|---|
MIT-CSAIL-TR-2003-021.pdf | 567.2Kb | application/pdf | View/ |
MIT-CSAIL-TR-2003-021.ps | 13.38Mb | application/postscript | View/ |