Show simple item record

Generating Trees of (Reducible) 1324-avoiding Permutations

dc.date.accessioned2005-12-22T12:00:00Zen_US
dc.date.accessioned2018-11-24T10:23:55Z
dc.date.available2005-12-22T12:00:00Zen_US
dc.date.available2018-11-24T10:23:55Z
dc.date.issued2003-10-09
dc.identifier.urihttp://hdl.handle.net/1721.1/30426
dc.identifier.urihttp://repository.aust.edu.ng/xmlui/handle/1721.1/30426
dc.description.abstractWe consider permutations that avoid the pattern 1324. We give exact formulas for thenumber of reducible 1324-avoiding permutations and the number of {1324, 4132, 2413, 3241}-avoiding permutations. By studying the generating tree for all 1324-avoiding permutations,we obtain a recurrence formula for their number. A computer program provides data for thenumber of 1324-avoiding permutations of length up to 20.
dc.format.extent12 p.
dc.format.extent13383375 bytes
dc.format.extent567281 bytes
dc.language.isoen_US
dc.titleGenerating Trees of (Reducible) 1324-avoiding Permutations


Files in this item

FilesSizeFormatView
MIT-CSAIL-TR-2003-021.pdf567.2Kbapplication/pdfView/Open
MIT-CSAIL-TR-2003-021.ps13.38Mbapplication/postscriptView/Open

This item appears in the following Collection(s)

Show simple item record